Skip to main content
Log in

Mesoscale Wind Field Modifications over the Baltic Sea

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

For two consecutive days during spring 1997, the windfield over the Baltic Sea has been studied. Thestrength of the geostrophic wind speed is the majordifference in synoptic conditions between these twodays. During both days, the mesoscale wind field overmost of the Baltic Sea is quite heterogeneous; themodifications primarily being caused by the land-seacontrasts. On the day with the weaker wind speed,sea-breeze circulations develop. As a consequence, thewind direction at lower levels is more or lessopposite to the geostrophic over large areas of theBaltic Sea and the surface wind speed decreases withoffshore distance. Wind speed maxima caused by the seabreezes are found along the east coasts in the studiedarea. For the other day, the slow growth of a stableinternal boundary layer over the sea also gives asurface wind speed decrease with offshore distancefrom the coast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexandersson, H. and Bergström, H.: 1979, ‘Evaluation of Double Theodolite Pibal Tracking Data’, Report No. 56, Dept. of Earth Sciences —Meteorol., Uppsala Univ., Villav. 16, SE-752 36 Uppsala, Sweden, 72 pp.

    Google Scholar 

  • Anderson, D.: 1997, ‘Meteorological Research Flight, Mk.2 HERCULES, Summary of Capability’, MRF Technical Note No. 21, Meteorological Research Flight, Building Y46, DERA, Farnborough, Hampshire, GU14 0LX, U.K.

    Google Scholar 

  • Andrèn, A.: 1990, ‘Evaluation of a Turbulence Closure Scheme Suitable for Air Pollution Applications’, J. Appl. Meteorol. 29, 224–239.

    Google Scholar 

  • Angevine, W. M., Trainer, M., McKeen, S.T., and Berkowitz, C. M.: 1996, ‘Mesoscale Meteorology of the New England Coast, Gulf of Maine, and Nova Scotia: Overview’, J. Geophys. Res. 101, 28,893–28,901.

    Google Scholar 

  • Arritt, R. W.: 1989, ‘Numerical Modelling of the Offshore Extent of Sea Breezes’, Quart. J. Roy. Meteorol. Soc. 115, 547–570.

    Google Scholar 

  • Arritt, R. W.: 1993, ‘Effects of the Large-Scale Flow on Characteristic Features of the Sea Breeze’, J. Appl. Meteorol. 32, 116–125.

    Google Scholar 

  • Atkins, N. T. and Wakimoto, R. M.: 1997, ‘Influence of the Synoptic-Scale Flow on Sea Breezes Observed during CaPE’, Mon. Wea. Rev. 125, 2112–2130.

    Google Scholar 

  • Atkinson, B. W.: 1981, Meso-Scale Atmospheric Circulations, Academic Press, San Diego, CA, pp. 125–214.

    Google Scholar 

  • Banta, R. M., Olivier, L. D., and Levinson, D. H.: 1993, ‘Evolution of the Monterey Bay Sea-Breeze Layer as Observed by Pulsed Doppler Lidar’, J. Atmos. Sci. 50, 3959–3982.

    Google Scholar 

  • Bechtold, P., Pinty, J.-P., and Mascart, P.: 1991, ‘A Numerical Investigation of the Influence of Large-Scale Winds on Sea-Breeze-and Inland-Breeze-Type Circulations’, J. Appl. Meteorol. 30, 1268–1279.

    Google Scholar 

  • Bergström, H.: 1996, ‘A Climatological Study of Boundary Layer Wind Speed Using a Meso-γ-Scale Higher-Order Closure Model’, J. Appl. Meteorol. 35, 1291–1306.

    Google Scholar 

  • Bergström, H., Johansson, P.-E., and Smedman, A.: 1988, ‘A Study of Wind Speed Modification and Internal Boundary-Layer Heights in a Coastal Region’, Boundary-Layer Meteorol. 42, 313–335.

    Google Scholar 

  • Cats, G.: 1995, ‘A Sea Breeze Simulation’, HIRLAM Newsletter, Nr. 22, December 1995. Available from: SMHI, SE-601 76 Norrköping, Sweden.

    Google Scholar 

  • Csanady, G. T.: 1974, ‘Equilibrium Theory of the Planetary Boundary Layer with an Inversion Lid’, Boundary-Layer Meteorol. 6, 63–79.

    Google Scholar 

  • Defant, F.: 1951, ‘Local Winds’, in Compendium of Meteorology, Amer. Meteorol. Soc., pp. 655–672.

  • Doran, J. C. and Gryning, S.-E.: 1987, ‘Wind and Temperature Structure over a Land-Water-Land Area’, J. Clim. Appl. Meteorol. 26, 973–979.

    Google Scholar 

  • Driedonks, A. G. M.: 1982, ‘Models and Observations of the Growth of the Atmospheric Boundary Layer’, Boundary-Layer Meteorol. 23, 283–306.

    Google Scholar 

  • Elliot, W. P.: 1958, ‘The Growth of the Atmospheric Internal Boundary Layer’, Trans. Amer. Geophys. Union 39, 1048–1067.

    Google Scholar 

  • Enger, L: 1990, ‘Simulation of Dispersion in a Moderately Complex Terrain, Part A. The Fluid Dynamic Model’, Atmos. Environ. 24A, 2431–2446.

    Google Scholar 

  • Estoque, M. A.: 1961, ‘A Theoretical Investigation of the Sea Breeze’, Quart. J. Roy. Meteorol. Soc. 87, 136–146.

    Google Scholar 

  • Estoque, M. A.: 1962, ‘The Sea Breeze as a Function of the Prevailing Synoptic Situation’, J. Atmos. Sci. 19, 244–250.

    Google Scholar 

  • Estoque, M. A., Gross, J., and Lai, H. W.: 1976, ‘A Lake Breeze over Southern Lake Ontario’, Mon. Wea. Rev. 104, 386–396.

    Google Scholar 

  • Finkele, K., Hacker, J. M., Kraus, H., and Byron-Scott, R. A. D.: 1995, ‘A Complete Sea-Breeze Circulation Cell Derived from Aircraft Measurements’, Boundary-Layer Meteorol. 73, 299–317.

    Google Scholar 

  • Garratt, J. R.: 1987, ‘The Stably Stratified Internal Boundary Layer for Steady and Diurnal Varying Offshore Flow’, Boundary-Layer Meteorol. 38, 369–394.

    Google Scholar 

  • Garratt, J. R.: 1990, ‘The Internal Boundary Layer —A Review’, Boundary-Layer Meteorol. 50, 171–203.

    Google Scholar 

  • Garratt, J. R. and Ryan, B. F.: 1989, ‘The Structure of the Stably Stratified Internal Boundary Layer in Offshore Flow over the Sea’, Boundary-Layer Meteorol. 47, 17–40.

    Google Scholar 

  • Grisogono, B. and Tjernström, M.: 1996, ‘Thermal Mesoscale Circulations on the Baltic Coast. 2. Perturbation of Surface Parameters’, J. Geophys. Res. 101(D14), 18,999–19,012.

    Google Scholar 

  • Grønås, S. and Sandvik, A. D.: 1996, ‘An Analysis of Sea and Land Breezes at High Latitudes Based on Numerical Simulations’, in A. D. Sandvik, Condensation Processes in a Non-Hydrostatic Mesoscale Model, Ph.D. Thesis. Available from: Geophysical Institute, University of Bergen, Allègaten 70, N-5007 Bergen, Norway.

    Google Scholar 

  • Grønås, S. and Sandvik, A. D.: 1998, ‘Numerical Simulations of Sea and Land Breezes at High Latitudes’, Tellus A 50, 469–490.

    Google Scholar 

  • Gustafson, N. and McDonald, A.: 1996, ‘A Comparison of the HIRLAM Gridpoint and Spectral Semi-Lagrangian Models’, Mon. Wea. Rev. 124, 2008–2022.

    Google Scholar 

  • Högström, U.: 1988, ‘Non-Dimensional Wind and Temperature Profiles in the Atmospheric Surface Layer: A Re-Evaluation’, Boundary-Layer Meteorol. 42, 55–78.

    Google Scholar 

  • Högström, U. and Smedman, A.: 1984, ‘The Wind Regime in Coastal Areas with Special Reference to Results Obtained from the Swedish Wind Energy Program’, Boundary-Layer Meteorol. 30, 351–373.

    Google Scholar 

  • Källèn, E.: 1996, ‘HIRLAM Documentation Manual. System 2.5’. Available from: SMHI, SE-601 76 Norrköping, Sweden.

  • Källstrand, B.: 1998, ‘Low Level Jets in a Marine Boundary Layer during Spring’, Contr. Atmos. Phys. 71, 359–373.

    Google Scholar 

  • Källstrand, B. and Smedman, A.: 1997, ‘A Case Study of the Near Neutral Coastal Internal Boundary Layer Growth —Aircraft Measurements Compared with Different Model Estimates’, Boundary-Layer Meteorol. 85, 1–33.

    Google Scholar 

  • Lundin, K., Smedman, A., and Högström, U.: 1990, ‘A System for Wind and Turbulence Measurements in a Wind Farm’, in Proceedings of the European Community Wind Energy Conference, Madrid, 10–14 September 1990, pp. 11–13.

  • Lyons, W. A.: 1972, ‘The Climatology and Predication of the Chicago Lake Breeze’, J. Appl. Meteorol. 11, 1259–1270.

    Google Scholar 

  • Mahrer, Y. and Segal, M.: 1985, ‘On the Effects of Islands' Geometry and Size on Inducing Sea Breeze Circulation’, Mon Wea. Rev. 113, 170–174.

    Google Scholar 

  • Melas, D. and Kambezidis, D.: 1992, ‘The Depth of the Internal Boundary Layer over an Urban Area under Sea-Breeze Conditions’, Boundary-Layer Meteorol. 61, 247–264.

    Google Scholar 

  • Mellor, G. L. and Yamada, T.: 1974, ‘A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers’, J. Atmos. Sci. 31, 1791–1806.

    Google Scholar 

  • Mohr, M.: 1997, ‘Comparisons of Simulations with Two Meso-Scale Models, the MIUU Model and the KAMM Model, Using Two Low-Level Jet Cases over the Baltic Sea’, Wind Energy Report WE 97:2, Dept. of Earth Sciences —Meteorol., Uppsala Univ., Villav. 16, SE-752 36 Uppsala, Sweden, 107 pp.

    Google Scholar 

  • Mulhearn, P. J.: 1981, ‘On the Formation of a Stably Stratified Internal Boundary-Layer by Advection of Warm Air over a Cooler Sea’, Boundary-Layer Meteorol. 21, 247–254.

    Google Scholar 

  • National Research Council (NRC), Coastal Meteorology: 1992, A Review of the State of the Science, National Academy Press, Washington, D.C., 99 pp.

    Google Scholar 

  • Nielsen, N. W. and Sass, B. H.: 1995, ‘Meso-Scale Forecasts at the Danish Meteorological Institute’, in HIRLAM 3 Workshop on Fine Scale Atmospheric Modeling for Operational Applications, Danish Meteorological Institute, 30–31 March 1995, Norrköping July 1995. Available from SMHI, SE-601 76 Norrköping, Sweden, pp. 47–52.

  • Pielke, R. A.: 1984, ‘Meso-Scale Meteorological Modeling’, Academic Press, San Diego, CA, pp. 456–464.

    Google Scholar 

  • Rotunno, R.: 1983, ‘On the Linear Theory of the Land and Sea Breeze’, J. Atmos. Sci. 40, 1999–2009.

    Google Scholar 

  • Sandström, S.: 1997, ‘Simulations of the Climatological Wind Field in the Baltic Sea Area Using a Meso-Scale Higher Order Closure Model’, J. Appl. Meteorol. 36, 1541–1552.

    Google Scholar 

  • Savijärvi, H.: 1995, ‘Sea Breeze Effects on Large-Scale Atmospheric Flow’, Beitr. Phys. Atmosph. 68, 335–344.

    Google Scholar 

  • Savijärvi, H. and Alestalo, M.: 1988, ‘The Sea Breeze over a Lake or Gulf as the Function of the Prevailing Flow’, Beitr. Phys. Atmosph. 61, 98–104.

    Google Scholar 

  • Smedman-Högström, A.-S. and Högström, U.: 1978, ‘A Practical Method for Determining Wind Frequency Distributions for the Lowest 200 m from Routine Meteorological Data’, J. Appl. Meteorol. 17, 942–954.

    Google Scholar 

  • Smedman, A., Bergström, H., and Grisogono, B.: 1997, ‘Evolution of Stable Internal Boundary Layer over a Cold Sea’, J. Geophys. Res. 102, 1091–1099.

    Google Scholar 

  • Smedman, A.-S., Bergström, H., and Högström, U.: 1995, ‘Spectra, Variances and Length Scales in a Marine Stable Boundary Layer Dominated by a Low Level Jet’, Boundary-Layer Meteorol. 76, 211–232.

    Google Scholar 

  • Steyn, D. G.: 1997, ‘Interactions between the Thermal Internal Boundary Layer and Sea Breezes’, in Proceedings of the EURASAP Workshop on the Determination of the Mixing Height: Current Progress and Problems, Risø, Denmark, 1–3 October 1997, pp. 137–140.

    Google Scholar 

  • Stunder, M. and Sethuraman, S.: 1985, ‘A Comparative Evaluation of the Coastal Internal Boundary-Layer Height Equations’, Boundary-Layer Meteorol. 32, 177–204.

    Google Scholar 

  • Tjernström, M.: 1991, ‘Airborne Observations of Thermal Mesoscale Circulations in the Coastal Marine Boundary Layer’, J. Geophys. Res. 92, 20,499–20,520.

    Google Scholar 

  • Tjernström, M. and Grisogono, B.: 1996, ‘Thermal Mesoscale Circulations on the Baltic Coast. 1. Numerical Case Study’, J. Geophys. Res. 101(D14), 18,979–18,997.

    Google Scholar 

  • U.S. Geological Survey's Eros Data Center: 1998, GTOPO30, Global 30 Arc Second Elevation Data, available at http://edcwww.cr.usgs.gov/landdaac/gtopo30/gtopo30.html, EROS Data Center, Sioux Falls, South Dakota, U.S.A.

    Google Scholar 

  • Walsh, J. E.: 1974, ‘Sea Breeze Theory and Applications’, J. Atm. Sci. 31, 2012–2026.

    Google Scholar 

  • Wexler, R.: 1946, ‘Theory and Observations of Land and Sea Breezes’, Bull. Amer. Meteorol. Soc. 27, 272–287.

    Google Scholar 

  • Xian, Z. and Pielke, R. A.: 1991, ‘The Effects of Width of Landmasses on the Development of Sea Breezes’, J. Appl. Meterol. 30, 1280–1304.

    Google Scholar 

  • Yan, H. and Anthes, R. A.: 1987, ‘The Effect of Latitude on the Sea Breeze’, Mon. Wea. Rev. 115, 936–956.

    Google Scholar 

  • Zhong, S. and Takle, E. S.: 1992, ‘An Observational Study of Sea-and Land-Breeze Circulation in an Area of Complex Coastal Heating’, J. Appl. Meteorol. 31, 1426–1438.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Källstrand, B., Bergström, H., Højstrup, J. et al. Mesoscale Wind Field Modifications over the Baltic Sea. Boundary-Layer Meteorology 95, 161–188 (2000). https://doi.org/10.1023/A:1002619611328

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002619611328

Navigation