Skip to main content
Log in

A Monte Carlo Model Of The Nocturnal Surface Temperatures In Urban Canyons

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A model for the urban canyon is formulated for meteorologicalconditions of weak winds at night time. Thermal radiation, conductivity and convection are simulated by means of the Monte Carlo method. These are the main physical processesof energy transfer that give rise to the characteristic temperaturedistribution in these systems. The model has been satisfactory tested under ideal conditions for which analytical solutions exist.The predictions of the model under morerealistic conditions accurately reproduce the observationalresults. A strong temperature gradient across streets, with the canyon corners up to 4 °C warmer than the canyon centre, is found for the deepest canyons. This theoretical predictionhas been successfully verified with measurementstaken in a number of streets of the city of Granada in Spain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnfield, A. J.: 1990, ‘Canyon Geometry, the Urban Fabric and Nocturnal Cooling: A Simulation Approach’, Physical Geog. 11, 220-239.

    Google Scholar 

  • Arnfield, A. J. and Mills, G. M.: 1994, ‘An Analysis of the Circulation Characteristics and Energy Budget of a Dry, Asymmetric, East-West Canyon. II Energy Budget’, Int. J. Climatol. 14, 239-261.

    Google Scholar 

  • Asaeda, T. and Ca, V. T.: 1996, ‘Heat Storage of Pavement and its Effect on the Lower Atmosphere’, Atmos. Environ. 30, 413-427.

    Google Scholar 

  • Binder, K.: 1992, The Monte Carlo Method in Condensed Matter Physics, Springer Verlag, Berlin, 392 pp.

    Google Scholar 

  • Bornstein, R.: 1982, ‘Urban Climate Models, Nature Limitations and Applications’, Proc. Technical Conf. Mexico, WMO 672, 237-276.

    Google Scholar 

  • Cermak, J. E.: 1995, ‘Thermal Effects on Flow and Dispersion over Urban Areas: Capabilities for Prediction by Physical Modeling’, Atmos. Environ. 30, 393-401.

    Google Scholar 

  • Clarke, R. H. and Brook, R. (eds.): 1979, The Koorin Expedition: Atmospheric Boundary Layer Data over Tropical Savannah Land, Australian Govt. Publishing Service, Dept. Sci., Bureau Meteorol., 359 pp.

  • Eliasson, Y.: 1996, ‘Urban Nocturnal Temperatures, Street Geometry and Land Use’, Atmos. Environ. 30, 379-392.

    Google Scholar 

  • Fernández, F. and Gómez, A. (eds.): 1998, Clima y Ambiente Urbano en Ciudades Españolas e Iberoamericas. Parteluz, Madrid, 606 pp.

    Google Scholar 

  • Figueroa, P. I. and Mazzeo, N. A.: 1998, ‘Urban-Rural Temperature Differences in Buenos Aires’, Int. J. Climatol. 18, 1709-1723.

    Google Scholar 

  • Gallo, K. P., Menab, A. L., Karl, T. R., Brown, J., Hood, J. J., and Tarpley, J. D.: 1993, ‘The Use of NOAA AVHRR Data for Assessment of the Urban Heat Island Effect’, J. Appl. Meteorol. 32, 899-908.

    Google Scholar 

  • Idso, S. B.: 1981, ‘A Set of Equations for Full Spectrum and 8–14 μm and 10.5–12.5 μ Thermal Radiation from Cloudless Skies’, Water Resour. Res. 17, 295-304.

    Google Scholar 

  • Johnson, G. T., Oke, T. R., Steyn, D. G., Watson, I. D., and Voogt, J. A.: 1991, ‘Simulation of Surface Urban Heat Island under “Ideal” Conditions at Night. Part 1, Theory and Tests against Field Data’, Boundary-Layer Meteorol. 56, 275-294.

    Google Scholar 

  • Jones, P. D., Groisman, P. Y., Coughlan, M., Plummer, N., Wong, W. C., and Karl, T. R.: 1990, ‘Assessment of Urbanization Effects in Time Series of Surface Air Temperature over Land’, Nature 347, 169-177.

    Google Scholar 

  • Kalos, M. H. and Whitlock, P. A.: 1986, Monte Carlo Methods, Vol. I: Basics. Wiley, New York, 186 pp.

    Google Scholar 

  • Kobayashi, T. and Takamura, T.: 1994, ‘Upward Long Wave Radiation From a Non-Black Urban Canopy’, Boundary-Layer Meteorol. 69, 201-213.

    Google Scholar 

  • Landsberg, H. E.: 1981, The Urban Climate, Academic Press, New York, 275 pp.

    Google Scholar 

  • Lee, H. Y.: 1988, ‘An Application of NOAA AVHRR Thermal Data to the Study of the Urban Heat Island’, Atmos. Environ. 27B, 1699-1720.

    Google Scholar 

  • Lester, W. A. (ed.): 1997, Recents Advances in Quantum Monte Carlo Methods, World Scientific, Singapore, 235 pp.

    Google Scholar 

  • López, A., Fernández, F., Arroyo, F., Martin-Vide, J., and Cuadrat, J.: 1993, El Clima de las Ciudades Españolas. Ed. Madrid, Madrid, 265 pp.

    Google Scholar 

  • Lu, J., Arya, P., Snyder, W. H., and Lawson, R. E.: 1997, ‘A Laboratory Study of the Urban Heat Island in a Calm and Stably Stratified Environment. Part II: Velocity Field’, J. Appl. Meteorol. 36, 1392-1402.

    Google Scholar 

  • Mills, G. M.: 1993, ‘Simulation of the Energy Budget of a Urban Canyon. I Model Structure and Sensitivity Test’, Atmos. Environ. 27B, 157-170.

    Google Scholar 

  • Mills, G. M. and Arnfield, A. J.: 1993, ‘Simulation of the Energy Budget of a Urban Canyon. II Comparison of Model Results with Measurements’, Atmos. Environ. 27B, 171-181.

    Google Scholar 

  • Montávez, J. P., Rodríguez, A. J., and Jiménez, J. I.: 1999, ‘A Study of the Urban Heat Island of Granada’, Int. J. Climatol., in press.

  • Montávez, J. P., Sarsa, A., Sánchez, E., and Jiménez, J. I.: 1998, Applied Sciences and the Environment, Vol. 4 of Environmental Engineering, Chapter: Some Applications of Monte Carlo Methods in Urban Climate, WIT Press, pp. 113-121.

  • Moreno, M. C.: 1994, ‘Intensity and Form of the Urban Heat Island in Barcelona’, Int. J. Climatol. 14, 705-710.

    Google Scholar 

  • Nakamura, Y. and Oke, T. R.: 1988, ‘Wind, Temperature and Stability Conditions in an East-West Oriented Urban Canyon’, Atmos. Environ. 22, 2691-2700.

    Google Scholar 

  • Noto, K.: 1996, ‘Dependence of the Heat Island Phenomena on Stable Stratification and Heat Quantity in a Calm Environment’, Atmos. Environ. 30, 475-485.

    Google Scholar 

  • Novak, M. D. and Black, T. A.: 1985, ‘Theorical Determination of the Surface Energy Balance and Thermal Regimes of Bare Soils’, Boundary-Layer Meteorol. 33, 313-333.

    Google Scholar 

  • Nunez, M. and Oke, T. R.: 1977, ‘Energy Balance of an Urban Canyon’, J. Appl. Meteorol. 16, 11-19.

    Google Scholar 

  • Oke, T. R.: 1981, ‘Canyon Geometry and the Nocturnal Urban Heat Island: Comparison of Scale Model and Field Observations’, J. Climatol. 1, 237-254.

    Google Scholar 

  • Oke, T. R.: 1987, Boundary Layer Climates, Routledge, London and New York, 435 pp.

    Google Scholar 

  • Oke, T. R. and Maxwell, G. B.: 1975, ‘Urban Heat Island Dynamics in Montreal and Vancouver’, Atmos. Environ. 9, 191-200.

    Google Scholar 

  • Oke, T., Johnson, G., Steyn, D., and Watson, I.: 1991, ‘Simulation of Surface Urban Heat Island under “Ideal” Conditions. Part 2: Diagnosis of Causation’, Boundary-Layer Meteorol. 56, 339-358.

    Google Scholar 

  • Oke, T. R., Zeuner, G., and Jauregui, E.: 1992, ‘The Surface Energy Balance in Mexico City’, Atmos. Environ. 26B, 433-444.

    Google Scholar 

  • Roth, H., Oke, T. R., and Emery, W. J.: 1984, ‘Satellite-derived Urban Heat Islands from Three Coastal Cities and the Utilization of Such Data in Urban Climatology’, Int. J. Remote Sens. 10, 1-13.

    Google Scholar 

  • Saitoh, T. S., Shimada, T., and Hoshi, H.: 1996, ‘Modeling and Simulation of the Tokyo Urban Heat Island’, Atmos. Environ. 30, 3431-3442.

    Google Scholar 

  • Sakakibara, Y.: 1996, ‘A Numerical Study of the Effect of Urban Geometry upon the Surface Energy Budget’, Atmos. Environ. 30, 487-496.

    Google Scholar 

  • Swaid, H.: 1995, ‘Urban Related Aspects of the Force-Restore Method’, Atmos. Environ. 29, 3401-3409.

    Google Scholar 

  • Tacsler, R.: 1980, ‘Studies of the Development and Thermal Structure of the Urban Boundary Layer in Uppsala: Parts I and II’, Reports 60 and 61, Meteorol. Inst. Uppsala Univ.

  • Terjung, W. H. and O'Rourke, P. A.: 1979, ‘Simulating the Causal Elements of Urban Heat Islands’, Boundary-Layer Meteorol. 19, 93-118.

    Google Scholar 

  • Voogt, J. A. and Oke, T. R.: 1991, ‘Validation of an Urban Radiation Model for Nocturnal Long-Wave Fluxes’, Boundary-Layer Meteorol. 54, 347-361.

    Google Scholar 

  • Yague, C., Zurita, E., and Martinez, A.: 1996, ‘Statistical Analysis of the Urban Heat Island’, Atmos. Environ. 30, 429-435.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Pedro Montávez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montávez, J.P., Jiménez, J.I. & Sarsa, A. A Monte Carlo Model Of The Nocturnal Surface Temperatures In Urban Canyons. Boundary-Layer Meteorology 96, 433–452 (2000). https://doi.org/10.1023/A:1002600523841

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002600523841

Navigation