Skip to main content
Log in

Long-wavelength Cloud Rolls Over the Arctic Ice

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Cloud bands observed over the Arctic sea ice are interpreted in terms of long-wavelength gravity-wave modes trapped between the ground and a vertically-thin over-reflecting layer in the mid-troposphere. The over-reflecting layer is neutrally-stratified and lies between the counter-streaming upper troposphere and lower troposphere in a strong high-pressure system. The Arctic cloud bands appear to share many features with the long-wavelength roll waves observed in more temperate latitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Booker, J. R. and Bretherton, F. P.: 1967, ‘The Critical Layer for Internal Gravity Waves in a Shearflow’, J. Fluid Mech. 27, 513–519.

    Google Scholar 

  • Brooks, I.M. and Rogers, D. P.: 1997, ‘Aircraft Observations of Boundary Layer Rolls Off the Coast of California’, J. Atmos. Sci. 54, 1834–1849.

    Google Scholar 

  • Chimonas G.: 1993, ‘Surface Drag Instabilities in the Atmospheric Boundary Layer’, J. Atmos. Sci. 50, 1914–1924.

    Google Scholar 

  • Chimonas G.: 1999, ‘Steps, Waves and Turbulence in the Stably Stratified Planetary Boundary Layer’, Boundary-Layer Meteorol. 90, 397–421.

    Google Scholar 

  • Clark, T. L., T. Hauf, and Kuettner, J. P.: 1986, ‘Convectively Forced Internal GravityWaves: Results from Two-Dimensional Numerical Experiments’, Quart. J. Roy. Meteorol. Soc. 112, 899–925.

    Google Scholar 

  • Etling, D and Brown, R. A.: 1993, ‘Roll Vortices in the Planetary Boundary Layer: A Review’, Boundary-Layer Meteorol. 65, 215–248.

    Google Scholar 

  • Etling, D. and Raasch, S.: 1987, ‘Numerical Simulation of Vortex Roll Development during a Cold Air Outbreak’, Dyn. Atmos. Oceans 10, 277–290.

    Google Scholar 

  • Fett, R. W., S. D. Burk, W. T. Thompson, and Kozo, T. L.: 1994, ‘Environmental Phenomena of the Beaufort Sea Observed during the Leads Experiments’, Bull. Amer. Meteorol. Soc. 75, 2131–2145.

    Google Scholar 

  • Gossard, E. E. and Hooke, W. H.: 1975, Waves in The Atmosphere, Elsevier Scientific Pub. Co., New York, 456 pp.

    Google Scholar 

  • Hauf, T. and Clark, T. L.: 1989, ‘Three-Dimensional Numerical Experiments on Convectively Forced Internal Gravity Waves’, Quart. J. Roy. Meteorol. Soc. 115, 309–333.

    Google Scholar 

  • Hines, C. O.: 1960, ‘Internal Gravity Waves at Ionospheric Heights’, Can. J. Phys. 38, 1441.

    Google Scholar 

  • Jeffreys, H.: 1925, ‘The Flow ofWater in an Inclined Channel of Rectangular Section’, Phil. Mag. S. 6(49), 793–807.

    Google Scholar 

  • Jones, W. L.: 1968, ‘Reflexion and Stability of Waves in Stably Stratified Fluids with Shear Flow: A Numerical Study’, J. Fluid Mech. 34, 609–624.

    Google Scholar 

  • Kuettner, J. P., Hilderbrand, P. A., and Clark, T. L.: 1987, ‘Convection Waves: Observations of GravityWave Sytems over Convectively Active Boundary Layers’, Quart. J. Roy. Meteorol. Soc. 113, 445–467.

    Google Scholar 

  • Lemone, M.: 1973, ‘The Structure and Dynamics of Horizontal Roll Vortices in the PBL’, J. Atmos. Sci. 30, 1077–1091.

    Google Scholar 

  • Lighthill, M. J.: 1967, ‘Predictions of the Velocity Field Coming from Acoustic Noise and A Generalized Turbulence in a Layer Overlaying a Convectively Unstable Atmospheric Region’, I.A.U. Symposium no 28, 429–452.

    Google Scholar 

  • Lilly, D. K.: 1966, ‘On the Instability of Ekman Boundary Flow’, J. Atmos. Sci. 23, 481–494.

    Google Scholar 

  • Lindzen, R. S. and Tung, K. K.: 1978, ‘Wave Overreflection and Shear Instability’, J. Atmos. Sci. 35, 1626–1632.

    Google Scholar 

  • Mason, P. J., and Sykes, R. I.: 1982, ‘A Two-Dimensional Numerical Study of Horizontal Roll Vortices in an Inversion Capped Planetary Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 108, 801–823.

    Google Scholar 

  • Miles, J. W.: 1961, ‘On the Stability of Heterogeneous Shear Flows’, J. Fluid Mech. 10, 496–508.

    Google Scholar 

  • Miles, J. W. and G. Ierley: 1998, ‘Surface Wave Generation by Gusty Wind’, J. Fluid Mech. 357, 21–28.

    Google Scholar 

  • Mourad, P. D. and B. A. Walter: 1996, ‘Analysis of Mesoscale Features Observed in the Arctic Atmospheric Boundary Layer’, Mon. Wea. Rev. 124, 1924–1940.

    Google Scholar 

  • Phillips, O. M.: 1957, ‘On the Generation of Waves by Turbulent Wind’, J. Fluid Mech. 4, 426–434.

    Google Scholar 

  • Phillips, O. M.: 1960, ‘Resonance Phenonena in Gravity Waves. Hydrodynamic Stability’, Amer. Math. Soc., Providence, RI., Lib. Congr. Cat. No. 50–1183.

  • Sang, T. G.: 1993, ‘On the Dynamics of Convection Waves’, Quart. J. Roy. Meteorol. Soc. 115, 309–333.

    Google Scholar 

  • Smith, R. B.: 1976, ‘The Generation of Lee Waves by the Blue Ridge’, J. Atmos. Sci. 33, 507–519.

    Google Scholar 

  • Turner, J. S.: 1973, Buoyancy Effects in Fluids, Cambridge University Press, U.K., 367 pp.

    Google Scholar 

  • Wallace, J. M. and P. V. Hobbs: 1977, Atmospheric Science. An Introductory Survey, Academic Press, Inc., Orlando, U.S.A., 467 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chimonas, G. Long-wavelength Cloud Rolls Over the Arctic Ice. Boundary-Layer Meteorology 94, 89–113 (2000). https://doi.org/10.1023/A:1002494229431

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002494229431

Navigation