Skip to main content
Log in

Solar Wind Acceleration by the Dissipation of Alfvén Waves

  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

Axford and McKenzie [1992] suggested that the energy released in impulsive reconnection events generates high frequency Alfvén waves. The kinetic equation for spectral energy density of waves is derived in the random phase approximation. Solving this equation we find the wave spectrum with the power law "−1" in the low frequency range which is matched to the spectrum above the spectral brake with the power low "−1.6." The heating rate of solar wind protons due to the dissipation of Alfvén waves is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. I. Axford and J. F. McKenzie (1992) in Solar Wind Seven. ed. by E. Marsch and R. Schwenn, p. 1.

  2. E. N. Parker, R. Schwenn ibid}, p. 79.

  3. R. Schwenn and E. Marsch (eds.), Physics of the Inner Heliosphere II, Springer-Verlag, p. 48-53.

  4. G. L. Withbroe (1988) Astrophys. J., 325, 442.

    Article  ADS  Google Scholar 

  5. H. Petschek (1964) AAS NASA Symposium of the Physics of Solar Flares, SP-50, ed. W. H Hess, NASA, Washington, D. C.

    Google Scholar 

  6. M. A. Lee and H. J. Volk (1973) Astrophys. Space Sci., 24, 31.

    Article  ADS  Google Scholar 

  7. M. A. Livshits and V. N. Tsytovich (1970) Nuclear Fusion, 10, 241.

    Google Scholar 

  8. V. N. Tsytovich (1977) Theory of Turbulent Plasma, Consultants Bureau, New York, London, p. 251.

    Google Scholar 

  9. A. A. Galeev (1965) Doklady AN SSSR(in russian), 161, 802.

    MathSciNet  Google Scholar 

  10. L. R. Lyons, D. J. Williams (1984) Quantitative Aspects of Magnetospheric Physics, D. Reidel Pub. Com., p.193.

  11. R. C. Davidson (1983) in Handbook of Plasma Physics, eds. M. N. Rosenbluth, R. Z. Sagdeev, Basic Plasma Physics, eds. A. A. Galeev, R. N. Sudan, vol. 1, p. 519.

  12. E. Kamke (1959) Differentialgleichungen Lösungsmethoden und Lösungen, vol. 2, Leipzig, Akademische Verlagsgesellschaft Geest and Portig K.-G., p. 140.

    Google Scholar 

  13. C.-Y. Tu and E. Marsch (1995) J. Geophys. Res. 100, 12323.

    Article  ADS  Google Scholar 

  14. B. Bavassano, M. Dobrowolny, F. Mariani and N. F. Ness (1982) J. Geophys. Res. 87, 3617.

    ADS  Google Scholar 

  15. R. H. Kraichnan (1965) Phys. Fluids 8, 1385.

    Article  MathSciNet  ADS  Google Scholar 

  16. M. Banaszkiewich, A. Czechowski, W. I. Axford, J. F. McKenzie, G. V. Sukhorukova (1997) Proc.31st ESLAB Symp. “Correlated Phenomena at the Sun in the Heliosphere and in Geospace,”ESTEC, Noordwijk, The Nethelands, 22–25 Sep., (ESA SP-415, Dec., 1997), p. 17-21.

    Google Scholar 

  17. C.-Y. Tu (1988) J. Geophys. Res., 93, 7.

    ADS  Google Scholar 

  18. E. Marsch (1997) Proc.31st ESLAB Symp. “Correlated Phenomena at the Sun in the Heliosphere and in Geospace,”ESTEC, Noordwijk, The Nethelands, 22–25 Sep., 1997 (ESA SP-415, Dec.).

    Google Scholar 

  19. Whang (1973) J. Geophys. Res., 78, 7221.

    Article  ADS  Google Scholar 

  20. J. Hollweg (1974) J. Geophys. Res., 79, 1539.

    ADS  Google Scholar 

  21. Barnes (1979) J. Geophys. Res., 84, 4459.

    ADS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galeev, A.A., Sadovski, A.M. Solar Wind Acceleration by the Dissipation of Alfvén Waves. Astrophysics and Space Science 264, 101–112 (1998). https://doi.org/10.1023/A:1002492508904

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002492508904

Keywords

Navigation