Skip to main content
Log in

Deformation Quantization of Symplectic Fibrations

  • Published:
Compositio Mathematica

Abstract

A symplectic fibration is a fibre bundle in the symplectic category (a bundle of symplectic fibres over a symplectic base with a symplectic structure group). We find the relation between the deformation quantization of the base and the fibre, and that of the total space. We consider Fedosov's construction of deformation quantization. We generalize the Fedosov construction to the quantization with values in a bundle of algebras. We find that the characteristic class of deformation of a symplectic fibration is the weak coupling form of Guillemin, Lerman, and Sternberg. We also prove that the classical moment map could be quantized if there exists an equivariant connection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A. and Sternheimer, D.: Deformation theory and quantization, I,II. Ann. Phys. 111 (1978), 61-151.

    Google Scholar 

  2. Berline, N., Getzler, E. and Vergne, M.: Dirac Operators and Index Theorem, Springer-Verlag, Berlin, 1992.

    Google Scholar 

  3. Bismut, J.-M.: The Atiyah-Singer index theorem for families of Dirac operators: Two heat equation proofs, Invent. Math. 83 (1986), 91-151.

    Google Scholar 

  4. Connes, A., Flato, M. and Sternheimer, D.: Closed star products and cyclic cohomology, Lett. Mat. Phys. 24 (1992), 1-12.

    Google Scholar 

  5. Deligne, P.: Déformations de l'algèbre des fonctions d'une varietésymplectique: comparaison entre Fedosov et De Wilde, Lecomte, Selecta Math. 1(4) (1995).

  6. De Wilde, M. and Lecomte, P. B. A.: Existence of star-products and of formal deformations in Poisson Lie algebra of arbitrary symplectic manifold, Lett. Math. Phys. 7 (1983), 487-496.

    Google Scholar 

  7. Donin, J: On the quantization of Poisson brackets, Preprint, q-alg/9505028; Internat. J. Modern Phys. A 11 (1996), 863.

    Google Scholar 

  8. Fedosov, B.: A simple geometric construction of deformation quantization, J. Differential. Geom. 40 (1994), 213-238.

    Google Scholar 

  9. Fedosov, B.: Reduction and eigenstates in deformation quantization, In: Advances in Partial Differential Equations, Akademie-Verlag, Berlin, 1994, pp. 277-297.

    Google Scholar 

  10. Fedosov, B.: Deformation Quantization and Index Theory, Academie-Verlag, Berlin, 1996.

    Google Scholar 

  11. Fedosov, B.: Non-Abelian reduction in deformation quantization, Lett. Math. Phys. 43(2) (1998), 137-154.

    Google Scholar 

  12. Gelfand, I. M., Kazhdan, D. A. and Fuks, D. B.: The action of infinite dimensional Lie algebras, Funct. Anal. Appl. 6 (1972), 9-13.

    Google Scholar 

  13. Gelfand, I., Retakh, V. and Shubin, M.: Fedosov manifolds, Preprint, dg-ga/9707024; Adv. Math. 136(1) (1998), 104-140.

    Google Scholar 

  14. Getzler, E.: The Bargmann representation, generalized Dirac operators and the index of pseudodifferential operators on R n, In: Symplectic Geometry and Quantization (Sanda and Yokohama, 1993), Contemp. Math. 179, Amer. Math. Soc., Providence, RI, 1994, pp. 63-81.

    Google Scholar 

  15. Guillemin, V., Lerman, E. and Sternberg, S.: Symplectic Fibrations and Multiplicity Diagrams, Cambridge Univ. Press, 1995.

  16. Gutt, S.: An explicit *-product on the cotangent bundle of a Lie group, Lett. Math. Phys. 7 (1983), 249-258.

    Google Scholar 

  17. Kontsevich, M.: Deformation quantization of Poisson manifolds, I, Preprint, q-alg/9709040.

  18. Kravchenko, O.: How to calculate the Fedosov connection. Exercises de style arXiv:math.SG/0008157, Actes de colloque Glanon-II (1998).

  19. Lecomte, P. B. A.: Existence des star-produits selon B. Fedosov, Séminaire 95.005, Institut de Mathématique Université Liège, 1995.

  20. Lichnerowicz, A.: Connexions symplectiques et ⋈-produits invariants, C.R. Acad. Sci. Paris 291 (1980), 413-417.

    Google Scholar 

  21. McDuff, D. and Salamon, D.: Introduction to Symplectic Topology, Clarendon Press, Oxford, 1995.

    Google Scholar 

  22. Marsden, J. E., Ratiu, T. and Raugel, G.: Symplectic connections and the linearization of Hamiltonian systems, Proc. Royal Soc. Edinburgh A 117 (1991), 329-380.

    Google Scholar 

  23. Mazzeo, R. and Melrose, R.: The adiabatic limit,Hodge cohomology and Leray's spectral sequence for a fibration, J. Differential Geom. 31 (1990), 185-213.

    Google Scholar 

  24. Nest, R. and Tsygan, B.: Algebraic index theorem, Comm. Math. Phys. 172(2) (1995), 223-262.

    Google Scholar 

  25. Nest, R. and Tsygan, B.: Algebraic index theorem for families, Adv. Math. 113(2) (1995), 151-205.

    Google Scholar 

  26. Nest, R. and Tsygan, B.: Formal versus analytic index theorems, Internat. Math. Res. Notices No. 11 (1996), 557-564.

  27. Sternberg, S.: Minimal coupling and the symplectic mechanics of a classical particle in the presence of a Yang-Mills field, Proc. Natl. Acad. Sci. USA 74 (1977), 5253-5254.

    Google Scholar 

  28. Xu, P.: Fedosov * products and quantum momentum maps, Preprint hep-th/9608006; Comm. Math. Phys. 197(1) (1998), 167-197.

    Google Scholar 

  29. Weinstein, A.: A universal phase space for particles in Yang-Mills fields, Lett. Math. Phys. 2 (1978), 1-13.

    Google Scholar 

  30. Weinstein, A.: Deformation quantization [d'après B. Fedosov and others], Séminaire Bourbaki, 46ème année, 1993-94, no° 789 (1994).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kravchenko, O. Deformation Quantization of Symplectic Fibrations. Compositio Mathematica 123, 131–165 (2000). https://doi.org/10.1023/A:1002452002677

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002452002677

Navigation