Skip to main content
Log in

Cohomology of the Vector Fields Lie Algebra and Modules of Differential Operators on a Smooth Manifold

  • Published:
Compositio Mathematica

Abstract

Let M be a smooth manifold, \({\mathcal{S}} \) the space of polynomial on fibers functions on T*M (i.e., of symmetric contravariant tensor fields). We compute the first cohomology space of the Lie algebra, Vect(M), of vector fields on M with coefficients in the space of linear differential operators on \({\mathcal{S}} \). This cohomology space is closely related to the Vect(M)-modules, \({\mathcal{D}}\) λ(M), of linear differential operators on the space of tensor densities on M of degree λ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bouarroudj, S. and Ovsienko, V.: Three cocycles on Diff (S 1) generalizing the Schwarzian derivative, Internat. Math. Res. Notices, No. 1 (1998), 25–39.

  2. De Wilde, M. and Lecomte, P.: Cohomologie 3-différentiable de l'algèbre de Poisson d'une variété symplectique, Ann. Inst. Fourier 33(4) (1983), 83–94.

    Google Scholar 

  3. De Wilde, M. and Lecomte, P.: Star-products on cotangent bundles, Lett. Math. Phys. 7 (1983), 235–241.

    Google Scholar 

  4. Duval, C. and Ovsienko, V.: Space of second order linear differential operators as a module over the Lie algebra of vector fields, Adv. in Math. 132(2) (1997), 316–333.

    Google Scholar 

  5. Duval, C. Lecomte, P. and Ovsienko, V.: Conformally equivariant quantization: Exist-ence and uniqueness, Ann. Inst. Fourier 49(6) (1999), 1999–2029.

    Google Scholar 

  6. Feigin, B. L. and Fuchs, D. B.: Homology of the Lie algebra of vector fields on the line, Funct. Anal. Appl. 14 (1980), 201–212.

    Google Scholar 

  7. Fuchs, D. B.: Cohomology of Infinite-Dimensional Lie Algebras, Consultants Bureau, New York, 1987.

    Google Scholar 

  8. Kobayashi, S. and Horst, C.: Topics in complex differential geometry, In: Complex Differential Geometry, Birkhäuser-Verlag, Basel, 1983, pp. 4–66.

    Google Scholar 

  9. Lecomte, P.: On the cohomology of sl(m + 1;R) acting on differential operators and sl(m + 1;R)-equivariant symbol, Preprint Université de Liège, 1998.

  10. Lecomte, P., Mathonet, P. and Tousset, E.: Comparison of some modules of the Lie algebra of vector fields, Indag. Math. 7(4) (1996), 461–471.

    Google Scholar 

  11. Lecomte, P. and Ovsienko, V.: Projectively invariant symbol map and cohomology of vector fields Lie algebras intervening in quantization, dg-ga/9611006.

  12. Lecomte, P. and Ovsienko, V.: Projectively invariant symbol calculus, Lett. Math. Phys. 49(3) (1999), 173–196.

    Google Scholar 

  13. Nijenhuis, A. and Richardson, R. W.: Deformations of homomorphisms of Lie algebras, Bull. Amer. Math. Soc. 73 (1967), 175–179.

    Google Scholar 

  14. Peetre, J.: Une caractérisation abstraite des opérateurs différentiels, Math. Scand. 7 (1959), 211–218; 8 (1960), 116-120.

    Google Scholar 

  15. Richardson, R. W.: Deformations of subalgebras of Lie algebras, J. Differential Geom. 3 (1969), 289–308.

    Google Scholar 

  16. Roger, C.: Déformations algébriques et applications la physique, Gaz. Math. 1991, No. 49, 75–94.

  17. Weyl, H.: The Classical Groups, Princeton Univ. Press, 1946.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lecomte, P.B.A., Ovsienko, V.Y. Cohomology of the Vector Fields Lie Algebra and Modules of Differential Operators on a Smooth Manifold. Compositio Mathematica 124, 95–110 (2000). https://doi.org/10.1023/A:1002447724679

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002447724679

Navigation