Skip to main content
Log in

Turbulence Statistics Above And Within Two Amazon Rain Forest Canopies

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The turbulence structure in two Amazon rain forestswas characterised for a range of above-canopystability conditions, and the results compared withprevious studies in other forest canopies and recenttheory for the generation of turbulent eddies justabove forest canopies. Three-dimensional wind speedand temperature fluctuation data were collectedsimultaneously at up to five levels inside and abovetwo canopies of 30–40 m tall forests, during threeseparate periods. We analysed hourly statistics, jointprobability distributions, length scales, spatialcorrelations and coherence, as well as power spectraof vertical and horizontal wind speed.

The daytime results show a sharp attenuation ofturbulence in the top third of the canopies, resultingin very little movement, and almost Gaussianprobability distributions of wind speeds, in the lowercanopy. This contrasts with strongly skewed andkurtotic distributions in the upper canopy. At night,attenuation was even stronger and skewness vanishedeven in the upper canopy. Power spectral peaks in thelower canopy are shifted to lower frequencies relativeto the upper canopy, and spatial correlations andcoherences were low throughout the canopy. Integrallength scales of vertical wind speed at the top of thecanopy were small, about 0.15 h compared to avalue of 0.28 h expected from the shear lengthscale at the canopy top, based on the hypothesis that theupper canopy air behaves as a plane mixing layer. Allthis suggests that, although exchange is not totallyinhibited, tropical rain forest canopies differ from other forests in that rapid, coherentdownward sweeps do not penetrate into the lowercanopy, and that length scales are suppressed. This isassociated with a persistent inversion of stability inthat region compared to above-canopy conditions. Theinversion is likely to be maintained by strong heatabsorption in the leaves concentrated near thecanopy top, with the generally weak turbulence beingunable to destroy the temperature gradients over thelarge canopy depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, L. H. Jr., Lemon, E., and Müller, L.: 1972, 'Environment of a Costa Rican forest', Ecology 53, 102–111.

    Google Scholar 

  • Amiro, B. D.: 1990a, 'Comparison of Turbulence Statistics within Three Boreal Forest Canopies', Boundary-Layer Meteorol. 51, 99–121.

    Google Scholar 

  • Amiro, B. D.: 1990b, 'Drag Coefficients and Turbulence Spectra within Three Boreal Forest Canopies', Boundary-Layer Meteorol. 52, 227–246.

    Google Scholar 

  • Andreae, M. O. and Crutzen, P. J.: 1997, 'Atmospheric Aerosols: Biogeochemical Sources and Role in Atmospheric Chemistry', Science 276, 1052–1058.

    Google Scholar 

  • Baldocchi, D. D. and Meyers, T. P.: 1988a, 'Turbulence Structure in a Deciduous Forest', Boundary-Layer Meteorol. 43, 345–364.

    Google Scholar 

  • Baldocchi, D. D. and Meyers, T. P.: 1988b, 'A Spectral and Lag-Correlation Analysis of Turbulence in a Deciduous Forest Canopy', Boundary-Layer Meteorol. 45, 31–58.

    Google Scholar 

  • Bergström, H. and Högström, U.: 1989, 'Turbulent Exchange above a Pine Forest II. Organized Structures' Boundary-Layer Meteorol. 49, 231–263.

    Google Scholar 

  • Cabral, O. M. R., McWilliam, A.-L. C., and Roberts, J. M.: 1996, 'In-Canopy Microclimate of Amazonian Forest and Estimates of Transpiration', in J. H. C. Gash, C. A. Nobre, J. Roberts, and R. L. Victoria (eds.): 1996, Amazonian Deforestation and Climate, John Wiley, Chichester, pp. 331–351.

    Google Scholar 

  • Carswell, F., Meir, P., Wandelli, E., Kruijt, B., and Grace, J.: 2000, 'Photosynthetic Capacity of a Central Amazon Rain Forest', Tree Physiology 20, in press.

  • Denmead, O. T. and Bradley, E. F.: 1987, 'On Scalar Transport in Plant Canopies', Irrigation Sci. 8, 131–149.

    Google Scholar 

  • Fitzjarrald, D. R., Stormwind, B. L., Fisch, G., and Cabral, O. M. R.: 1988, 'Turbulent Transport Observed Just above the Amazon Forest', J. Geophys. Res. 93, 1551–1563

    Google Scholar 

  • Fitzjarrald, D. R. and Moore, K. E.: 1990, 'Mechanisms of Nocturnal Exchange between the Rainforest and the Atmosphere', J. Geophys. Res. 95, 16839–16850.

    Google Scholar 

  • Fitzjarrald, D. R., Moore, K. E., Cabral, O. M. R., Svolar, J., Manzi, A., and Sá, L. D. de A.: 1990, 'Daytime Turbulent Exchange between the Amazon Forest and the Atmosphere', J. Geophys. Res. 95, 16825–16838.

    Google Scholar 

  • Gao, W., Shaw, R. H., and Paw U, K. T.: 1989, 'Observation of Organised Structure in Turbulent Flow Within and Above a Forest Canopy', Boundary-Layer Meteorol. 47, 349–377.

    Google Scholar 

  • Gardiner, B. A.: 1994, 'Wind and Wind Forces in a Plantation Spruce Forest', Boundary-Layer Meteorol. 67, 161–186.

    Google Scholar 

  • Garratt, J. R.: 1992, The Atmospheric Boundary Layer, Cambridge University Press, U.K., 316 pp.

    Google Scholar 

  • Gash, J. H. C., Nobre, C. A., Roberts, J., and Victoria, R. L. (eds.): 1996, Amazonian Deforestation and Climate, John Wiley, Chichester, 611 pp.

    Google Scholar 

  • Grace, J., Lloyd, J., McIntyre, J., Miranda, A. C., Meir, P., Miranda, H., Nobre, C., Moncrieff, J. M., Massheder, J., Malhi, Y., Wright, I. R., and Gash, J.: 1995, 'Carbon Dioxide Uptake by an Undisturbed Tropical Rain Forest in South-West Amazonia 1992–1993', Science 270, 778–780.

    Google Scholar 

  • Hosker Jr., R. P., Nappo, C. J., and Hanna, S. R.: 1974, 'Diurnal Variation of Vertical Thermal Structure in a Pine Plantation', Agric. Meteorol. 13, 257–265.

    Google Scholar 

  • Jacob, D. J. and Bakwin, P. S.: 1991, 'Cycling of NOx in Tropical Forest Canopies', in J. E. Rogers and W. B. Whitman (eds.), Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides and Halomethanes, American Society of Microbiology, Washington D.C., pp. 237–253.

    Google Scholar 

  • Jacobs, A. F. G., Van Boxel, J. H., and Shaw, R. H.: 1992, 'The Dependence of Canopy Layer Turbulence on Within-Canopy Thermal Stratification', Agric. For. Meteorol. 58, 247–256.

    Google Scholar 

  • Kaimal, J. C. and Finnigan, J. J.: 1994, Atmospheric Boundary Layer Flows, Oxford University Press, New York, 289 pp.

    Google Scholar 

  • Kruijt, B., Lloyd, J., Grace, J., McIntyre, J., Farquhar, G. D., Miranda, A. C., and McCracken, P.: 1996, 'Sources and Sinks of CO2 in Rondônian Tropical Forest, Inferred from Concentrations and Turbulence along a Vertical Gradient', in J. H. C. Gash, C. A. Nobre, J. Roberts and R. L. Victoria (eds.), Amazonian Deforestation and Climate, John Wiley, Chichester, pp. 331–351.

    Google Scholar 

  • Lloyd, C. R., Shuttleworth, W. J., Gash, J. H. C., and Turner, M.: 1984, 'A Microprocessor System for Eddy Correlation', Agric. For. Meteorol. 33, 63–76.

    Google Scholar 

  • Lloyd, J., Kruijt, B., Hollinger, D. Y., Grace, J., Wong, S. C., Francey, R. J., Kelliher, F., Farquhar, G. D., Schulze, E. D., Miranda, A. C., Miranda, H. S., Wright, I. R., and Gash, J. H. C.: 1996, 'Vegetation Effects on the Isotopic Composition of Atmospheric CO2 at Local and Regional Scales: Theoretical Aspects and a Comparison between Rain Forest in Amazonia and a Boreal Forest in Siberia', Aust. J. Plant Physiol. 23, 371–399.

    Google Scholar 

  • Malhi, Y., Nobre, A. D., Grace, J., Kruijt, B., Pereira, M. G. P., Culf, A., and Scott, S.: 1998, 'Carbon Dioxide Transfer over a Central Amazon Rain Forest', J. Geophys. Res. 103(D24), 31,593–31,612.

    Google Scholar 

  • McCracken, P. J.: 1993, Turbulent Exchange of Momentum and Carbon Dioxide of a Sitka Spruce Plantation, Ph.D. Thesis, University of Edinburgh, U.K.

  • McWilliam, A.-L., Roberts, J. M., Cabral, O. M. R., Leitao, M. V. B. R., de Costa, A. C. L., Maitelli, G. T., and Zamparoni, C. A. G. P.: 1993, 'Leaf Area Index and Above Ground Biomass of Terra Firme Rain Forest and Adjacent Clearings in Amazonia', Funct. Ecol. 7, 310–317.

    Google Scholar 

  • Meir, P. W.: 1996, The Exchange of Carbon Dioxide in Tropical Forest, Ph.D. Thesis, Edinburgh University, U.K., 207 pp.

  • Moncrieff, J. B., Massheder, J. M., De Bruin, H., Elbers, J., Friborg, T., Heusinkveld, T., Kabat, P., Scott, S., and Verhoef, A.:1997, 'A System to Measure Surface Fluxes of Momentum, Sensible Heat, Water Vapour and Carbon Dioxide', J. Hydrol. 188–189, 589–611.

    Google Scholar 

  • Pinker, R. T. and Holland, J. Z.: 1988, 'Turbulence Structure of a Tropical Forest', Boundary-Layer Meteorol. 43, 43–63.

    Google Scholar 

  • Raupach, M. R. and Thom, A. S.: 1981, 'Turbulence in and above Plant Canopies', Ann. Rev. Fluid Mech. 13, 97–129.

    Google Scholar 

  • Raupach, M. R.: 1988, 'Canopy Transport Processes', in W. L. Steffen and O. T. Denmead (eds.), Flow and Transport in the Natural Environment: Advances and Applications, Springer, Berlin, pp. 95–127.

    Google Scholar 

  • Raupach, M. R., Finnigan, J. J., and Brunet, Y.: 1996, 'Coherent Eddies and Turbulence in Vegetation Canopies: The Mixing Layer Analogy', Boundary-Layer Meteorol. 78, 351–382.

    Google Scholar 

  • Schotanus, P., Nieuwstad, F. T. M., and De Bruin, H. A. R.: 1983, 'Temperature Measurement with a Sonic Anemometer and its Application to Heat and Moisture Fluxes', Boundary-Layer Meteorol. 26, 81–93.

    Google Scholar 

  • Sellers, P. J., Dickinson, R. E., Randall, D. A., Betts, A. K., Hall, F. G., Berry, J. A., Collatz, G. J., Denning, A. S., Mooney, H. A., Nobre, C. A., Sato, N., Field, C. B., and Henderson-Sellers, A.: 1997, 'Modeling the Exchanges of Energy, Water and Carbon between Continents and the Atmosphere', Science 275, 502–509.

    Google Scholar 

  • Shaw, R. H., Brunet, Y., Finnigan, J. J., and Raupach, M. R.: 1995, 'A Wind Tunnel Study of Air Flow inWaving Wheat: Two Point Velocity Statistics', Boundary-Layer Meteorol. 76, 349–376.

    Google Scholar 

  • Shuttleworth, W. J., Gash, J. H. C., Lloyd, C. R., Moore, C. J., Roberts, J., Marques, A. de O., Fisch, G., Silva Filho, V. de P., Ribeiro, M.N.G., Molion, L.C. B., Nobre, J. C., de Sa, L.D.A., Cabral, O. M. R., Patel, S. R., and Moraes, J. C.: 1984, 'Daily Variations in Temperature and Humidity within and above Amazonian Forest', Weather 40, 102–108.

    Google Scholar 

  • Smith, F. B., Carson, D. J., and Oliver, H. R.: 1972, 'Mean Wind-Direction Shear through a Forest Canopy', Boundary-Layer Meteorol. 3, 178–190.

    Google Scholar 

  • Stanley, H. M.: 1878, Through the Dark Continent: or the Sources of the Nile around the Great Lakes of Equatorial Africa and down the Livingstone River to the Atlantic Ocean: Sampson Low, Marston, Searle & Rivington, London.

    Google Scholar 

  • Stull, R. B.: 1988, An Introduction to Boundary Layer Meteorology,Kluwer Academic Publishers, Dordrecht, 666 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kruijt, B., Malhi, Y., Lloyd, J. et al. Turbulence Statistics Above And Within Two Amazon Rain Forest Canopies. Boundary-Layer Meteorology 94, 297–331 (2000). https://doi.org/10.1023/A:1002401829007

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002401829007

Navigation