Skip to main content
Log in

Mechanism of binocular interaction in refraction errors: study using pattern-reversal visual evoked potentials

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

In this study we sought to determine whether a natural condition involving fine discrimination, for example moderately severe myopia, might yield interesting information regarding the binocular interaction expressed by visual evoked potentials (VEPs). We studied ten normal subjects with a mild refraction deficits. Transient VEPs were elicited by monocular and binocular stimulation under conditions of natural and lens-corrected vision. The visual stimulus was a pattern-reversal checkerboard consisting of 15' and 40' checks. VEPs in response to binocular stimulation were compared with monocular VEPs. We plotted the monocular `better-VEP' and `worse-VEP' response, since significant differences between individual eye stimulations were present. We found no significant difference between the mean N75 and P100 latencies of the binocular VEP and the better monocular VEP, regardless of the check size used and of natural or corrected vision. Under all stimulus conditions, the mean amplitude of the N75-P100 of the binocular VEPs was also larger than the better monocular VEP response. The difference proved more significant when we stimulated our subjects with smaller squares and left vision uncorrected. The mean P100-N145 amplitude obtained with binocular stimulation was larger than the better monocular VEP response only when using small checks (15') and uncorrected vision. Overlapping latencies are consistent with an earlier hypothesis that monocular and binocular VEPs originate postsynaptically from the binocular neurons in the primary visual cortex. The gain in amplitude achieved by binocular stimulation may depend upon the removal of `tonic interocular inhibition' and/or on a cortical modulatory mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Campbell FW, Green DG. Monocular versus binocular visual acuity. Nature 1965; 208: 191–2.

    Article  PubMed  CAS  Google Scholar 

  2. Campbell FW, Robson JG. Application of Fourier analysis to the visibility of gratings. J Physiol 1968; 197: 551–66.

    PubMed  CAS  Google Scholar 

  3. Poggio GF, Fischer B. Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey. J Neurophysiol 1977; 40: 1392–405.

    PubMed  CAS  Google Scholar 

  4. Katsumi O, Tanino T, Hirose T. Objective evaluation of binocular function with pattern reversal VER. I. Effect of contrast. Acta Ophthalmol 1985; 63: 706–11.

    CAS  Google Scholar 

  5. Katsumi O, Tanino T, Hirose T. Objective evaluation of binocular function using the pattern reversal visual evoked response. II. Effect of mean luminosity. Acta Ophthalmol 1986; 64: 199–205.

    CAS  Google Scholar 

  6. Apkarian PA, Nakayama K, Tyler CW. Binocularity in the human visual evoked potential: facilitation, summation and suppression. Electroenceph clin Neurophysiol 1981; 51: 32–48.

    Article  PubMed  CAS  Google Scholar 

  7. Fulton AB, Hartmann EE, Hansen RM. Electrophysiologic testing techniques for children. Doc Ophthalmol 1989; 71: 341.

    Article  PubMed  CAS  Google Scholar 

  8. Hamer RD, Norcia AM, Tyler CW, Hsu-Winges C. The development of monocular and binocular VEP acuity. Vision Res 1989; 29: 397–408.

    Article  PubMed  CAS  Google Scholar 

  9. Leguire LE, Rogers GL, Bremer DL. Visual-evoked response binocular summation in normal and strabismic infants. Defining the critical period. Invest. Ophthalmol Vis Sci 1991; 32: 126–33.

    PubMed  CAS  Google Scholar 

  10. McCulloch DL, Skarf B. Development of the human visual system: monocular and binocular pattern VEP latency. Invest Ophtalmol Vis Sci 1991; 32: 2372–81.

    CAS  Google Scholar 

  11. Jakobsson P, Lennerstrand G. Binocular interaction in the VEP to grating stimulation. II. Spatial frequency effects. Acta Ophthalmol 1985; 63: 290–6.

    Article  CAS  Google Scholar 

  12. Kurita-Tashima S, Tobimatsu S, Nakayama-Hiromatsu M, Kato M. Effect of check size on the pattern reversal visual evoked potential. Electroenceph clin Neurophysiol 1991; 80: 161–6.

    Article  PubMed  CAS  Google Scholar 

  13. Bobak P, Bodis-Wollner I, Guillory S. The effect of blur and contrast on VEP latency: comparison between check and sinusoidal grating patterns. Electroenceph clin Neurophysiol 1987; 68: 247–55.

    Article  PubMed  CAS  Google Scholar 

  14. Sokol S, Moskowitz A. Effect of retinal blur on the peak latency of the pattern evoked potential. Vis Res 1981; 21: 1279–86.

    Article  PubMed  CAS  Google Scholar 

  15. Tumas V, Sakamoto AC. Comparison of the mechanism of latency shift in pattern reversal visual evoked potential induced by blurring and contrast reduction. Electroenceph clin Neurophysiol 1997; 104: 96–100.

    Article  PubMed  CAS  Google Scholar 

  16. Heravian-Shandiz J, Douthwaite A, Jenkins TCA. Effect of induced fixation disparity by negative lenses on the visually evoked potential wave. Ophthal Physiol Opt 1993; 13: 295–8.

    CAS  Google Scholar 

  17. Bodis-Wollner I, Barns MC, Mylin LH, Julesz B, Kropfl W. Binocular stimulation reveals cortical components of the human visual evoked potential. Electroenceph clin Neurophysiol 1981; 52: 298–305.

    Article  PubMed  CAS  Google Scholar 

  18. di Summa A, Polo A, Tinazzi M, Zanette G, Bertolasi L, Bongiovanni LG, Fiaschi A. Binocular interaction in normal vision studied by pattern-reversal visual evoked potentials (PR-VEPS). Ital J Neurol Sci 1997; 18: 81–6.

    Article  PubMed  CAS  Google Scholar 

  19. Bodis-Wollner I, Brannan JR, Nicoll J, Frkovic S, Mylin LH. A short latency cortical component of the foveal VEP is revealed by hemifield stimulation. Electroenceph clin Neurophysiol 1992; 84: 201–8.

    Article  PubMed  CAS  Google Scholar 

  20. Skrandies W. Monocular and binocular neuronal activity in human visual cortex revealed by electrical brain activity mapping. Exp Brain Res 1993; 93: 516–20.

    Article  PubMed  CAS  Google Scholar 

  21. Tobimatsu S, Kato M. The effect of binocular stimulation on each component of transient and steady-state VEPs. Electroenceph clin Neurophysiol 1996; 100: 177–83.

    Article  PubMed  CAS  Google Scholar 

  22. Harter MR, Seipe WH, Salmon LE. Binocular summation of visually evoked responses to pattern stimuli in humans. Vision Res 1973; 13: 1433–46.

    Article  PubMed  CAS  Google Scholar 

  23. White CT, Bonelli L Binocular summation in the evoked potentials as a function of image quality. Am J Optom 1970; 47: 304–9.

    CAS  Google Scholar 

  24. Tobimatsu S, Kurita-Tashima S, Nakayama-Hiromatsu M, Kato M. Effect of spatial frequency on transient and steady-state VEPs: stimulation on checkerboard, squarewavegrating and sinusoidal grating patterns. J Neurol Sci 1993, 118: 17–24.

    Article  PubMed  CAS  Google Scholar 

  25. Adachi-Usami E, Lehmann D. Monocular and binocular evoked average potential field topography: upper and lower hemiretinal stimuli. Exp Brain Res 1983; 50: 341–6.

    Article  PubMed  CAS  Google Scholar 

  26. Schroeder CE, Tenke CE, Givre SJ, Arezzo JC, Vaughan Jr HG. Striate cortical contribution to the surface-recorded pattern-reversal VEP in the alert monkey. Vision Res 1991; 31: 1143–57.

    Article  PubMed  CAS  Google Scholar 

  27. Minke B, Auerbach E. Latencies and correlations in single units and visual evoked potentials in the cat striate cortex following monocular and binocular stimulations. Exp Brain Res 1972; 14: 409–22.

    Article  PubMed  CAS  Google Scholar 

  28. Johansson B, Jackobson P. A comparison between normal and defective binocularity. Clin Vis Sci 1993; 8: 245–51.

    Google Scholar 

  29. Shawkat FS, Kriss A. Interocular interaction assessed by VEPs to pattern-onset,-reversal, and-offset in normally sighted and amblyopic subjects. Electroenceph clin Neurophysiol 1997; 104: 74–81.

    Article  PubMed  CAS  Google Scholar 

  30. Johansson B, Jackobson P. Luminance and color contrast sensitivity and VEP latency in subjects with normal and defective binocularity. Europ J Ophthalmol 1997; 7(1): 82–91.

    CAS  Google Scholar 

  31. Riemslag FCC, Spekreijse H, Van Wessem ThN. Responses to paired onset stimuli: implications for the delayed evoked potentials in multiple sclerosis. Electroenceph clin Neurophysiol 1985; 62: 155–66.

    Article  PubMed  CAS  Google Scholar 

  32. Denny N, Frumkes TE, Barns MC, Eysteinsson T. Tonic interocular suppression and binocular summation in human vision. J Physiol 1991; 437: 449–60.

    PubMed  CAS  Google Scholar 

  33. Eysteinsson T, Barns MC, Denny N, Fruinkes TE. Tonic Interocular suppression, binocular summation and the visual evoked potential. Invest Ophthalmol Vis Sci 1993; 34: 2443–8.

    PubMed  CAS  Google Scholar 

  34. Harter MR, Towle VL, Zakrzewski M, Moyer SM. An objective indicant of binocular vision in humans: size-specific interocular suppression of visual evoked potentials. Electroenceph clin Neurophysiol 1977; 43: 825–36.

    Article  PubMed  CAS  Google Scholar 

  35. Trick GL, Dawson WW, Compton JR Interocular luminance differences and the binocular pattern-reversal visual-evoked response. Invest Ophthal Vis Sci 1982; 22: 394–401.

    PubMed  CAS  Google Scholar 

  36. Hirsch JA, Gilbert CD. Synaptic physiology of horizontal connections in the cat's visual cortex. J Neurosci 1991; 11(6): 1800–9.

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

di Summa, A., Fusina, S., Bertolasi, L. et al. Mechanism of binocular interaction in refraction errors: study using pattern-reversal visual evoked potentials. Doc Ophthalmol 98, 139–151 (1999). https://doi.org/10.1023/A:1002190127573

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002190127573

Navigation