Skip to main content
Log in

The molecular structure and function of the inner blood-retinal barrier

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Cunha-Vaz JG, Shakib M, Ashton N. Studies on the permeability of the blood-retinal barrier. I. On the existence, development, and site of a blood-retinal barrier. Br J Ophthalmol 1966; 50: 441-53.

    PubMed  CAS  Google Scholar 

  2. Janzer RC, Raff MC. Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 1987; 325: 253-7.

    Article  PubMed  CAS  Google Scholar 

  3. Stone J, Dreher Z. Relationship between astrocytes, ganglion cells and vasculature of the retina. J Compar Neurol 1987; 255: 35-49.

    Article  CAS  Google Scholar 

  4. Rubin LL, Hall DE, Porter S, Barbu K, Cannon C, Horner HC, Janatpour M, Liaw CW, Manning K, Morales J. A cell-culture model of the blood-brain barrier. J Cell Biol 1991; 115: 1725-35.

    Article  PubMed  CAS  Google Scholar 

  5. Gardner TW, Lieth E, Khin SA, Barber AJ, Bonsall DJ, Lesher T, Rice K, Brennan WA Jr. Astrocytes increase barrier function and ZO-1 protein expression in cultured retinal capillary endothelial cells. Invest Ophthalmol Vis Sci 1997; 38: 2423-6.

    PubMed  CAS  Google Scholar 

  6. Anderson JM, Van Itallie CM. Tight junctions and the molecular basis for regulation of paracellular permeability. Am J Physiol 1995; 269: G467-76.

    PubMed  CAS  Google Scholar 

  7. Haskins J, Gu L, Wittchen ES, Hibbard J, Stevenson BR. ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin. J Cell Biol 1998; 141: 199-208.

    Article  PubMed  CAS  Google Scholar 

  8. Gardner TW, Lesher T, Khin S, Vu C, Barber A, Brennan WA Jr. Histamine reduces ZO-1 tight junction protein expression in cultured retinal capillary endothelial cells. Biochem J 1996; 320: 717-21.

    PubMed  CAS  Google Scholar 

  9. Hirase T, Staddon JM, Saitou M, Ando-Akatsuka Y, Itoh M, Furuse M, Fujimoto K, Tsukita S, Rubin LL Occludin as a possible determinant of tight junction permeability in endothelial cells. J Cell Sci 1997; 110: 1603-13.

    PubMed  CAS  Google Scholar 

  10. Kevil CG, Olcagama N, Trocha SD, Kalogeris TJ, Coe LL, Specian RD, Alexander JS. Role of occludin in endothelial solute barriers. FASEB J 1998; 12: A25.

    Google Scholar 

  11. Antonetti DA, Barber AJ, Khin S, Lieth E, Tarbel JM, Gardner TW and the Penn State Retina Research Group. Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content. Vascular endothelial growth factor decreases occludin in retinal endothelial cells. Diabetes 1998; 1953-59.

  12. Yaccino JA, Chong Y, Hollis TM, Gardner TW, Tarbell JA. Physiologic transport properties of cultured retinal microvascular endothelial cells. Curr Eye Res 1997; 16: 761-8.

    Article  PubMed  CAS  Google Scholar 

  13. Grimes PA, Laties AM. Early morphological alteration of the pigment epithelium in streptozotocin-induced diabetes: increased surface area of the basal cell membrane. Exp Eye Res 1980; 30: 631-9.

    Article  PubMed  CAS  Google Scholar 

  14. Wallow IHL. Posterior and anterior permeability defects? Morphologic observations on streptozotocin-treated rats. Invest Ophthalmol Vis Sci 1983; 24: 1259-68.

    PubMed  CAS  Google Scholar 

  15. Enea NA, Hollis TM, Kern JA, Gardner TW. Histamine H1 receptors mediate increased blood-retinal barrier permeability in experimental diabetes. Arch Ophthalmol 1989; 107: 270-4.

    PubMed  CAS  Google Scholar 

  16. Luna JD, Chan CC, Derevjanik NL, Mahlow J, Chiu C, Peng B, Tobe T, Campchiaro PA, Vinores SA. Blood retinal barrier (BRB) breakdown in experimental autoimmune uveoretinitis: comparison with VEGF,TNF, and IL1-B mediated breakdown. J Neurosci Res 1997; 49: 268-80.

    Article  PubMed  CAS  Google Scholar 

  17. Kurihara H, Anderson JM, Farquhar MG. Increased Tyr phosphorylation of ZO-1 during modification of tight junctions between glomerular foot processes. Am J Physiol 1995; 268: F514-24.

    PubMed  CAS  Google Scholar 

  18. Sakakibara A, Furuse M, Saitou M, Ando-Akatsuka Y, Tsukita S. Possible involvement of phosphorylation of occludin in tight junction formation. J Cell Biol 1997; 137: 1393-401.

    Article  PubMed  CAS  Google Scholar 

  19. Antonetti DA, Gardner TW, Khin SA, Hollinger LA, Barber AJ, Lieth E and the Penn State Retina Research Group. VEGF induces rapid phosphorylation of right junction proteins occludin and ZO-1 A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J Biol Chem 1999; 274: 23463-67.

    Article  PubMed  CAS  Google Scholar 

  20. Rutherford GEW, Barber AJ, Khin S, Lieth E, Gardner TW. Dexamethasone increases tight junction protein in bovine retinal endothelial cells. Invest Ophthalmol Vis Sci (suppl) 1997; 37: S791.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gardner, T.W., Antonetti, D.A., Barber, A.J. et al. The molecular structure and function of the inner blood-retinal barrier. Doc Ophthalmol 97, 229–237 (1999). https://doi.org/10.1023/A:1002140812979

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002140812979

Navigation