Skip to main content
Log in

Helicopter-Borne Flux Measurements in the Nocturnal Boundary Layer Over Land – a Case Study

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

This case study introduces measurements of turbulent fluxes in a nocturnal boundary layer in North Germany with the new helicopter-borne turbulence measurement system HELIPOD, a detailed data analysis and examination in regard of systematic errors of the instrument, and some comparison with local similarity theory and experiments of the past, in order to confirm the occurrence of small vertical turbulent fluxes. The examined nocturnal boundary layer offered excellent conditions to analyse the quality of the measurement system. In this connection, a detailed look at a strong ground-based inversion disclosed small turbulent fluxes with a spectral maximum at ten metres wavelength or less, embedded in intermittent turbulence. For verification of these fluxes, the measurements were compared with well established results from past experiments. Local similarity theory was applied to calculate dimensionless variances of the turbulent quantities, which were found in good agreement with other observations. Since shear and stratification varied significantly on the horizontal flight legs due to global intermittency, a method was developed to determine vertical gradients on a horizontal flight pattern, by use of small fluctuations of the measurement height. With these locally determined gradients, gradient transport theory became applicable and the turbulent diffusivities for heat and momentum, the Richardson number, and the flux Richardson number were estimated within isolated strong turbulent outbursts. Within these outbursts the flux Richardson number was found between 0.1 and 0.2. The functional relationship between the gradient Richardson number and the turbulent Prandtl number agreed well with observations in past experiments and large eddy simulation. The impact of the stratification on the vertical turbulent exchange, as already described for the surface layer using Monin–Obukhov similarity, was analogously observed in the very stably stratified bulk flow when local scaling was applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • André, J. C. and Mahrt, L.: 1982, 'The Nocturnal Surface Inversion and Influence of Clear-Air Radiative Cooling', J. Atmos. Sci. 39, 864–878.

    Google Scholar 

  • Andrén, A.: 1995, 'The Structure of Stably Stratified Atmospheric Boundary Layers: A Large-Eddy Simulation Study', Quart. J. Roy. Meteorol. Soc. 121, 961–985.

    Google Scholar 

  • Arya, S. P. S.: 1972, 'The Condition for the Maintenance of Turbulence in Stratified Flows', Quart. J. Roy. Meteorol. Soc. 98, 264–273.

    Google Scholar 

  • Beljaars, A. C. M. and Holtslag, A. A. M.: 1991, 'Flux Parameterization over Land Surfaces for Atmospheric Models', J. Appl. Meteorol. 30, 327–341.

    Google Scholar 

  • Büchler, R.: 1993, 'Untersuchungen zum aerodynamischen Störfeld an einer Hubschrauberschleppsonde', Master's Thesis, Institute for Flight Mechanics, Technical University of Braunschweig, Germany, 99 pp. + Appendix.

    Google Scholar 

  • Caughey, S. J., J. C. Wyngaard, and Kaimal, J. C.: 1979, 'Turbulence in the Envolving Stable Boundary Layer', J. Atmos. Sci. 36, 1041–1052.

    Google Scholar 

  • Dias, N., W. Brutsaert, and Wesely, M. L.: 1995, 'Z-Less Stratification under Stable Conditions', Boundary-Layer Meteorol. 75, 175–187.

    Google Scholar 

  • Findikakis, A. and Street, R.: 1979, 'An Algebraic Model for Subgrid Scale Turbulence in Stratified Flows', J. Atmos. Sci. 36, 1934–1949.

    Google Scholar 

  • Garratt, J. R.: 1992, The Atmospheric Boundary Layer, Cambridge University Press, U.K., 316 pp.

    Google Scholar 

  • Garratt, J., Hess, G., Physick, W., and Bougeault, P.: 1996, 'The Atmospheric Boundary Layer — Advances in Knowledge and Application', Boundary-Layer Meteorol. 78, 9–37.

    Google Scholar 

  • Grossman, R. L.: 1984, 'Bivariate Conditional Sampling of Moisture Flux over a Tropical Ocean', J. Atmos. Sci. 41, 3238–3252.

    Google Scholar 

  • Grossman, R. L.: 1992, 'Sampling Errors in the Vertical Fluxes of Potential Temperature and Moisture Measured by Aircraft During FIFE', J. Geophys. Res. 97, 18439–18443.

    Google Scholar 

  • Holtslag, A. A. M. and Nieuwstadt, F. T. M.: 1986, 'Scaling the Atmospheric Boundary Layer', Boundary-Layer Meteorol. 36, 201–209.

    Google Scholar 

  • Jacobi, C. and Roth, R.: 1995, 'Organisierte mesoskalige Störungen in der stabilen planetaren Grenzschicht', Meteor. Z., N. F. 4, 150–161.

    Google Scholar 

  • Lenschow, D. H., Li, X. S., Zhu, C. J., and Stankov, B. B.: 1988, 'The Stably Stratified Boundary Layer over the Great Plains; Part I: Mean and Turbulent Structure', Boundary-Layer Meteorol. 42, 95–121.

    Google Scholar 

  • Lenschow, D. H. and Stankov, B. B.: 1986, 'Length Scales in the Convective Boundary Layer', J. Atmos. Sci. 43, 1198–1209.

    Google Scholar 

  • Lumley, L. and Panofsky, H.: 1964, The Structure of Atmospheric Turbulence, John Wiley & Sons, New York, 239 pp.

    Google Scholar 

  • Mahrt, L.: 1985, 'Vertical Structure and Turbulence in the Very Stable Boundary Layer', J. Atmos. Sci. 42, 2333–2349.

    Google Scholar 

  • Mahrt, L.: 1989, 'Intermittency of Atmospheric Turbulence', J. Atmos. Sci. 46, 79–95.

    Google Scholar 

  • Mahrt, L.: 1998, 'Stratified Atmospheric Boundary Layers and Breakdown of Models', Theoret. Comput. Fluid Dynamics 11, 63–279.

    Google Scholar 

  • Merrit, G. and Rudinger, G.: 1973, 'Thermal and Momentum Diffusivity Measurements in a Turbulent Stratified Flow', AIAA J. 11, 1465–1470.

    Google Scholar 

  • Mordukhovich, M. I. and Tsvang, L. R.: 1966, 'Direct Measurement of Turbulent Flows at Two Heights in the Atmospheric Ground Layer', Izv. Atmos. Oceanic Phys. 2, 477–486.

    Google Scholar 

  • Muschinski, A. and Wode, C.: 1998, 'First In-Situ Evidence for Co-Existing Sub-Meter Temperature and Humidity Sheets in the Lower Free Troposphere', J. Atmos. Sci. 55, 2893–2906.

    Google Scholar 

  • Nieuwstadt, F.: 1984a, 'Some Aspects of the Turbulent Stable Boundary Layer', Boundary-Layer Meteorol. 30, 31–55.

    Google Scholar 

  • Nieuwstadt, F.: 1984b, 'The Turbulent Structure of the Stable, Nocturnal Boundary Layer', J. Atmos. Sci. 41, 2202–2216.

    Google Scholar 

  • Rogers, D. P., Johnson, D. W., and Friehe, C. A.: 1995, 'The Stable Internal Boundary Layer over a Coastal Sea. Part I: Airborne Measurements of the Mean and Turbulence Structure', J. Atmos. Sci. 52, 667–683.

    Google Scholar 

  • Schlittgen, R. and Streitberg, H. J.: 1994, Zeitreihenanalyse, R. Oldenbourg Verlag, München, 502 pp.

    Google Scholar 

  • Schumann, U. and Gerz, T.: 1995, 'Turbulent Mixing in Stably Stratified Shear Flows', J. Appl. Meteorol. 34, 33–48.

    Google Scholar 

  • Schürmann, M. and Wode, C.: 1996, 'HELIPOD — A Turbulence Measurement System for Meteorological Research', in Proc. Second Intl. Airborne Remote Sensing Conference and Exhibition, Vol. II. San Francisco, CA, pp. 451–452.

    Google Scholar 

  • Smedman, A.-S.: 1988, 'Observations of a Multi-Level Turbulence Structure in a Very Stable Atmospheric Boundary Layer', Boundary-Layer Meteorol. 44, 231–253.

    Google Scholar 

  • Smedman, A.-S.: 1991, 'Some Turbulence Characteristics in Stable Atmospheric Boundary Layer Flow', J. Atmos. Sci. 48, 856–868.

    Google Scholar 

  • Sorbjan, Z.: 1986, 'Local Similarity of Spectral and Cospectral Characteristics in the Stable-Continuous Boundary Layer', Boundary-Layer Meteorol. 35, 257–275.

    Google Scholar 

  • Sorbjan, Z.: 1987, 'An Examination of Local Similarity Theory in the Stably Stratified Boundary Layer', Boundary-Layer Meteorol. 38, 63–71.

    Google Scholar 

  • Sorbjan, Z.: 1988, 'Structure of the Stably-Stratified Boundary Layer during the SESAME-1979 Experiment', Boundary-Layer Meteorol. 44, 255–266.

    Google Scholar 

  • Stull, R.: 1988, An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht, 666 pp.

    Google Scholar 

  • Tarantola, A.: 1987, Inverse Problem Theory, Elsevier, Amsterdam, 613 pp.

    Google Scholar 

  • Webster, C. A. G.: 1964, 'An Experimental Study of Turbulence in a Density Stratified Shear Flow', J. Fluid Mech. 19, 221–245.

    Google Scholar 

  • Wittich, K.-P.: 1991, 'The Nocturnal Boundary Layer over Northern Germany: An Observational Study', Boundary-Layer Meteorol. 55, 47–66.

    Google Scholar 

  • Wittich, K.-P. and Roth, R.: 1984, 'A Case Study of Nocturnal Wind and Temperature Profiles over the Inhomogeneous Terrain of Northern Germany with some Considerations of Turbulent Fluxes', Boundary-Layer Meteorol. 28, 169–186.

    Google Scholar 

  • Wode, C. and R. Roth: 1996, 'HELIPOD — ein hubschraubergestütztes meteorologisches Meßsystem', BMFT-Abschlußbericht 07 KFT 74, Institut für Meteorologie und Klimatologie der Universität Hannover, 145 pp.

  • Wode, C., Roth, R. and Schürmann, M.: 1996, 'The Helicopter-Borne Sensor Package HELIPOD — Features and Capabilities of a New Turbulence Measurement System for Meteorological Research', in Proc. Second Intl. Airborne Remote Sensing Conference and Exhibition, Vol. II, San Francisco, CA, pp. 483–491.

    Google Scholar 

  • Yagüe, C. and Cano, J.: 1994, 'The Influence of Stratification on Heat and Momentum Turbulent Transfer in Antarctica', Boundary-Layer Meteorol. 69, 123–136.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bange, J., Roth, R. Helicopter-Borne Flux Measurements in the Nocturnal Boundary Layer Over Land – a Case Study. Boundary-Layer Meteorology 92, 295–325 (1999). https://doi.org/10.1023/A:1002078712313

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002078712313

Navigation