Skip to main content
Log in

A Roughness Sublayer Wind Profile Above A Non-Uniform Surface

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

In atmospheric models for different scales the underlying surface consists of patches of bare soil and plant communities with different morphological parameters. Experimental evidence indicates that there is a significant departure of the wind profile above a vegetative surface from that predicted by the logarithmic relationship, which gives values that are greater than those observed. This situation can seriously disturb the physical picture concerning the transfers of momentum, heat and water vapour from the surface into the atmosphere.

The intention of this paper is to generalise the calculation of exchange of momentum between the atmosphere and a non-homogenous vegetative surface, and to derive a general equation for the wind speed profile in a roughness sublayer under neutral conditions. Furthermore, these results are extended to non-neutral cases. The suggested expression for the wind profile is compared with some earlier approaches and the observations obtained above a broad range of plant communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Businger, J. A., Wyngaard, J. C., Izumi, Y. I., and Bradley, E. F.: 1971, ‘Flux-Profile Relationships in the Atmospheric Surface Layer’, J. Atmos. Sci. 28, 181-189.

    Google Scholar 

  • De Bruin, H. A. R. and Moore, C. J.: 1985, ‘Zero-Plane Displacement and Roughness Length for Tall Vegetation, Derived from a Simple Mass Conservation Hypothesis’, Boundary-Layer Meteorol. 42, 53-62.

    Google Scholar 

  • Delage, Y. and Verseghy, D.: 1995, ‘Testing the Effects of a New Land Surface Scheme and of Initial Soil Moisture Conditions in the Canadian Global Forecast Model’, Mon. Wea. Rev. 123, 3305-3317.

    Google Scholar 

  • Garratt, J. R.: 1978, ‘Flux Profile Relations above Tall Vegetation’, Quart. J. Roy. Meteorol. Soc. 104, 199-211.

    Google Scholar 

  • Garratt, J. R.: 1980, ‘Surface Influence upon Vertical Profiles in the Atmospheric Near-Surface Layer’, Quart. J. Roy. Meteorol. Soc. 106, 803-819.

    Google Scholar 

  • Goudriaan, J.: 1977, Crop Micrometeorology: A Simulation Study. Wageningen Centre for Agricultural Publishing and Documentation, Wageningen, The Netherlands, 249 pp.

    Google Scholar 

  • Högström, U.: 1985, ‘Von Karman's Constant in Atmospheric Boundary-Layer Flow: Reevaluated’, J. Atmos. Sci. 42, 263-270.

    Google Scholar 

  • Jacobs, A. F. G. and van Boxel, J. H.: 1988, ‘Changes of the Displacement Height and Roughness Length of Maize during a Growing Season’, Agric. For. Meteorol. 42, 53-62.

    Google Scholar 

  • Lalić, B.: 1997, ‘Profile of Wind Speed in Transition Layer above the Vegetation’, University of Belgrade, Masters Thesis, 72 pp. (in Serbian). (Available from Institute of Meteorology, Faculty of Physics, Dobračina 16, 11000, Belgrade, Yugoslavia.)

  • Lalić, B. and Mihailović, D. T.: 1998, ‘Derivation of Aerodynamic Characteristics Using a New Wind Profile in the Transition Layer above the Vegetation’, Res. Activ. Atmos. Oceanic Modelling Rept. 27, 4.25-4.26.

    Google Scholar 

  • Massman, W.: 1987, ‘A Comparative Study of Some Mathematical Models of the Mean Wind Structure and Aerodynamic Drag of Plant Canopies’, Boundary-Layer Meteorol. 40, 179-197.

    Google Scholar 

  • Mihailović, D. T.: 1996, ‘Description of a Land-Air Parameterization Scheme (LAPS)’, Global Planet. Change 13, 207-215.

    Google Scholar 

  • Mihailović, D. T. and Rajković, B.: 1993, ‘Surface Vegetation Parameterization in Atmospheric Models: A Numerical Study’, Meteorol. Z. 3, 239-243.

    Google Scholar 

  • Mihailović, D. T. and Kallos, G.: 1997, ‘A Sensitivity Study of a Coupled Soil-Vegetation Boundary-Layer Scheme for Use in Atmospheric Modelling’, Boundary-Layer Meteorol. 82, 283-315.

    Google Scholar 

  • Mihailović, D. T., Pielke, R. A., Rajković, B., Lee, T. J., and Jeftić, M.: 1993, ‘A Resistance Representation of Schemes for Evaporation from Bare and Partly Plant-Covered Surfaces for Use in Atmospheric Models’, J. Appl. Meteorol. 32, 1038-1054.

    Google Scholar 

  • Mihailović, D. T., Rajković, B., Dekić, Lj., Pielke, R. A., Lee, T. J., and Ye, Z.: 1995, ‘The Validation of Various Schemes for Parameterizing Evaporation from Bare Soil for Use in Meteorological Models: A Numerical Study Using in situ Data’, Boundary-Layer Meteorol. 76, 259-289.

    Google Scholar 

  • Monin, A. S. and Obukhov, A. M.: 1954, ‘Basic Regularity in Turbulent Mixing in the Surface Layer in the Atmosphere’, Publ. USSR Acad. Sci., Geophys. Inst., No. 24.

  • Monin, A. S. and Yaglom, A. M.: 1971, Statistical Fluid Mechanics: Mechanics of Turbulence, Vol. 1, The MIT Press, Cambridge, MA, 769 pp.

    Google Scholar 

  • Morgan, D. L., Pruitt, W. O., and Lourence, F. J.: 1971, ‘Analyses of Energy, Momentum, and Mass Transfers above Vegetative Surfaces, Research and Development’, Technical Report ECOM 68-G10-F, Department of Water Science and Engineering, University of California, Davis, CA, 127 pp.

    Google Scholar 

  • Priestley, C. H. B.: 1959, Turbulent Transfer in the Lower Atmosphere, The University of Chicago Press, Chicago, IL, 356 pp.

    Google Scholar 

  • Raupach, M. R.: 1981, ‘Conditional Statistics of Reynolds Stress in Rough-Wall and Smooth-Wall Turbulent Boundary Layers’, J. Fluid. Mech. 108, 363-382.

    Google Scholar 

  • Raupach, M. R. and Thom, A. S.: 1981, ‘Turbulence in and above Plant Canopies’, Ann. Rev. Fluid Mech. 13, 97-129.

    Google Scholar 

  • Raupach, M. R., Thom, A. S., and Edwards, I.: 1980, ‘A Wind Tunnel Study of Turbulent Flow Close to Regularly Arrayed Rough Surfaces’, Boundary-Layer Meteorol. 18, 373-397.

    Google Scholar 

  • Sellers, P. J., Mintz, Y., Sud, Y. C., and Dachler, A.: 1986, ‘A Simple Biosphere Model (SiB) for Use within General Circulation Models’, J. Atmos. Sci. 43, 505-531.

    Google Scholar 

  • Shaw, R. H. and Pereira, A. R.: 1982, ‘Aerodynamic Roughness of a Plant Canopy: A Numerical Experiment’, Agric. Meteorol. 26, 51-65.

    Google Scholar 

  • Tennekes, H.: 1982, ‘Similarity Relations, Scaling Laws and Spectral Dynamics’, in F. T. M. Nieuwstadt and H. van Dop (eds.), Atmospheric Turbulence and Air Pollution Modelling, D. Reidel Publ. Co., Dordrecht, pp. 37-64.

    Google Scholar 

  • Thom, A. S.: 1971, ‘Momentum Absorption by Vegetation’, Quart. J. Roy. Meteorol. Soc. 97, 414-428.

    Google Scholar 

  • van Pul, W. A. J.: 1992, ‘The Flux Ozone to a Maize Crop and Underlying Soil during a Growing Season’, Wageningen Agricultural University, Ph.D. Thesis, 147 pp.

  • Wilson, J. D., Ward, D. P., Thurtell, G. W., and Kidd, G. E.: 1982, ‘Statistics of Atmospheric Turbulence within and above a Corn Canopy’, Boundary-Layer Meteorol. 24, 495-519.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mihailović, D., Lalić, B., Rajković, B. et al. A Roughness Sublayer Wind Profile Above A Non-Uniform Surface. Boundary-Layer Meteorology 93, 425–451 (1999). https://doi.org/10.1023/A:1002063405979

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002063405979

Navigation