Antonie van Leeuwenhoek

, Volume 76, Issue 1–4, pp 217–246 | Cite as

Peptidases and amino acid catabolism in lactic acid bacteria

  • Jeffrey E. Christensen
  • Edward G. Dudley
  • Jeffrey A. Pederson
  • James L. Steele
Article

Abstract

The conversion of peptides to free amino acids and their subsequent utilization is a central metabolic activity in prokaryotes. At least 16 peptidases from lactic acid bacteria (LAB) have been characterized biochemically and/or genetically. Among LAB, the peptidase systems of Lactobacillus helveticus and Lactococcus lactis have been examined in greatest detail. While there are homologous enzymes common to both systems, significant differences exist in the peptidase complement of these organisms. The characterization of single and multiple peptidase mutants indicate that these strains generally exhibit reduced specific growth rates in milk compared to the parental strains. LAB can also catabolize amino acids produced by peptide hydrolysis. While the catabolism of amino acids such as Arg, Thr, and His is well understood, few other amino acid catabolic pathways from lactic acid bacteria have been characterized in significant detail. Increasing research attention is being directed toward elucidating these pathways as well as characterizing their physiological and industrial significance.

amino acid catabolism lactic acid bacteria peptidases physiology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe K, Hayashi H & Maloney PC (1996) Exchange of aspartate and alanine. Mechanism for development of a proton-motive force in bacteria. J. Biol. Chem. 271: 3079-3084Google Scholar
  2. Ailing AC & Engels WJM (1996) Conversion of methionine by enzymes from Lactococcus lactis subsp. cremoris B78 during cheese ripening, poster K3, Federation of European Microbiological Societies Fifth Symposium on Lactic Acid Bacteria, 8-12 September, Veldhoven, The NetherlandsGoogle Scholar
  3. Arnau J, Jorgensen F, Madsen SM, Vrang A & Israelsen H (1998) Cloning of the Lactococcus lactis adhE gene, encoding a multifunctional alcohol dehydrogenase, by complementation of a fermentative mutant of Escherichia coli. J. Bacteriol. 180: 3049-3055Google Scholar
  4. Arora G & Lee BH (1992) Purification and characterization of aminopeptidase from Lactobacillus casei ssp. casei LLG. J. Dairy Sci. 75: 700-710Google Scholar
  5. Arora G & Lee BH (1994) Purification and characterization of an aminopeptidase from Lactobacillus casei subsp. rhamnosus S93. Biotech. Appl. Biochem. 19: 179-192Google Scholar
  6. Atlan D, Gilbert C, Blanc B & Portalier R (1994) Cloning, sequencing and characterization of the pepIP gene encoding a proline iminopeptidase from Lactobacillus delbrueckii subsp. bulgaricus CNRZ 397. Microbiol. 140: 527-535Google Scholar
  7. Atlan D, Laloi P & Portalier R (1990) X-Prolyldipeptidyl aminopeptidase of Lactobacillus delbrueckii ssp. bulgaricus: Characterization of the enzyme and isolation of deficient mutants. Appl. Environ. Microbiol. 56: 2174-2179Google Scholar
  8. Atiles MW, Dudley EG & Steele JL (1999) Characterization and inactivation of the branched-chain aminotransferase gene from Lactococcus lactis LM0230. Manuscript in preparationGoogle Scholar
  9. Axelsson L (1998) Lactic acid bacteria: classification and physiology. In: Salminen S & von Wright A (Eds) Lactic acid bacteria. Microbiology and functional aspects, (pp 1-72). Marcel Dekker, Inc., New YorkGoogle Scholar
  10. Baankreis R & Exterkate FA (1991) Characterisation of a peptidase from Lactococcus lactis ssp. cremoris HP that hydrolyses di-and tripeptides containing proline or hydrophobic residues as the amino-terminal amino acid. Syst. Appl. Microbiol. 14: 317-323Google Scholar
  11. Baankreis R, Vanschalkwijk S, Ailing AC & Exterkate FA (1995) The occurrence of two intracellular oligoendopeptidases in Lactococcus lactis and their significance for peptide conversion in cheese. Appl. Microbiol. Biotech. 44: 386-392Google Scholar
  12. Bacon CL, Jennings PV, Fhaolain IN & O'Cuinn G (1994) Purification and characterisation of an aminopeptidase A from cytoplasm of Lactococcus lactis subsp. cremoris AM2. Int. Dairy. J. 4: 503-519Google Scholar
  13. Bacon CL, Wilkinson M, Jennings PV, Fhaolain IN & O'Cuinn G (1993) Purification and characterization of an aminotripeptidase from cytoplasm of Lactococcus lactis subsp. cremoris AM2. Int. Dairy. J. 3: 163-177Google Scholar
  14. Bernard N, Johnsen K, Ferain T, Garmyn D, Hols P, Holbrook JJ & Delcour J (1994) NAD+-dependent D-2-hydroxyisocaproate dehydrogenase of Lactobacillus delbrueckii subsp. bulgaricus. Gene cloning and enzyme characterization. Eur. J. Biochem. 224: 439-446Google Scholar
  15. Biede SL, Paulsen PV, Hammond EG & Glatz BA (1979) The flavor of Swiss cheese. In: Underkofler LA (Ed) Development in Industrial Microbiology, (pp 203-210). Society for Industrial Microbiology, Arlington, VAGoogle Scholar
  16. Blanc B, Laloi P, Atlan D, Gilbet C & Portalier R (1993) Two cell-wall-associated aminopeptidases from Lactobacillus helveticus and the purification and characterization of APII from strain ITGL1. J. Gen. Microbiol. 139: 1441-1448Google Scholar
  17. Bockelmann W, Beuck HP, Lick S & Heller K (1995) Purification and characterization of a new tripeptidase from Lactobacillus delbrueckii ssp. bulgaricus B14. Int. Dairy. J. 5: 493-502Google Scholar
  18. Bockelmann W, Fobker M & Teuber M (1991) Purification and characterization of the X-prolyl-dipeptidyl-aminopeptidase from Lactobacillus delbrückii subsp. bulgaricus and Lactobacillus acidophilus. Int. Dairy. J. 1: 51-66Google Scholar
  19. Bockelmann W, Gollan V & Heller KJ (1997) Purification of a second tripeptidase from Lactobacillus delbrueckii subsp. bulgaricus B14. Milchwissenschaft 52: 500-503Google Scholar
  20. Bockelmann W, Hoppeseyler T & Heller KJ (1996) Purification and characterization of an endopeptidase from Lactobacillus delbrueckii subsp. bulgaricus B14. Int. Dairy. J. 6: 1167-1180Google Scholar
  21. Bockelmann W, Shulz Y & Teuber M (1992) Purification and characterization of an aminopeptidase from Lactobacillus delbrückii subsp. bulgaricus. Int. Dairy. J. 2: 95-107Google Scholar
  22. Boeker EA & Snell EE (1972) Amino acid decarboxylases. In PD Boyer (Ed.) The Enzymes. 6: 217-253Google Scholar
  23. Booth M, Donnelly WJ, Fhaoláin IN, Jennings PV & O'Cuinn G (1990a) Proline-specific peptidases of Streptococcus cremoris AM2. J. Dairy Res. 57: 79-88Google Scholar
  24. Booth M, Fhaoláin IN, Jennings PV & O'Cuinn G (1990b) Purification and characterization of a post-proline dipeptidyl aminopeptidase from Streptococcus cremoris AM2. J. Dairy Res. 57: 89-100Google Scholar
  25. Booth M, Jennings V, Ni Fhaoláin I & O'Cuinn G (1990c) Prolidase activity of Lactococcus lactis ssp. cremoris AM2: Partial purification and characterization. J. Dairy Res. 57: 245-254Google Scholar
  26. Bosman BW, Tan PST & Konings WN (1990) Purification and characterization of a tripeptidase from Lactococcus lactis ssp. cremoris Wg2. Appl. Environ. Microbiol. 56: 1839-1843Google Scholar
  27. Bosset JO, Collomb M & Sieber R (1993) The aroma composition of Swiss Gruyère cheese IV. The acidic volatile components and their changes in content during ripening. Lebensm. Wissen. Technol. 26: 581-592Google Scholar
  28. Braun SD & Olson NF (1986) Microencapsulation of cell-free extracts to demonstrate the feasibility of heterogeneous enzyme systems and cofactor recycling for development of flavor in cheese. J. Dairy Sci. 69: 1202-1208Google Scholar
  29. Brennand CP, Ha JK & Lindsay RC (1989) Aroma properties and thresholds of some branched-chain and other minor volatile fatty acids occurring in milkfat and meat lipids. J. Sensory Studies 4: 105-120Google Scholar
  30. Brückner R (1998) Direct sequence submission to GenBank for gltA (glucose uptake protein) from Staphylococcus xylosus (Accession Y14043). UnpublishedGoogle Scholar
  31. Chang GW & Snell EE (1968) Histidine decarboxylase of Lactobacillus 30a. II. Purification, substrate specificity, and stereospecificity. Biochemistry 7: 2005-2012Google Scholar
  32. Chapot-Chartier MP, Nardi M, Chopin MC, Chopin A & Gripon JC (1993) Cloning and sequencing of pepC, a cysteine aminopeptidase gene from Lactococcus lactis ssp. cremoris AM2. Appl. Environ. Microbiol. 59: 330-333Google Scholar
  33. Chapot-Chartier MP, Rul F, Nardi M & Gripon JC (1994) Gene cloning and characterization of PepC, a cysteine aminopeptidase from Streptococcus thermophilus, with sequence similarity to the eukaryotic bleomycin hydrolase. Eur. J. Biochem. 224: 497-506Google Scholar
  34. Chen YS & Steele JL (1998) Genetic characterization and physiological role of endopeptidase O from Lactobacillus helveticus CNRZ32. Appl. Environ. Microbiol. 64: 3411-3415Google Scholar
  35. Chich J-F, Rigolet P, Nardi M, Gripon J-C, Ribadeau-Dumas B & Brunie S (1995) Purification, crystallization, and preliminary X-ray analysis of PepX, an X-Prolyl dipeptidyl aminopeptidase from Lactococcus lactis. Prot. Struct. Funct. Genet. 23: 278-281Google Scholar
  36. Chopin A (1993) Organization and regulation of genes for amino acid biosynthesis in lactic acid bacteria. FEMS Microbiol. Rev. 12: 21-38Google Scholar
  37. Christensen JE, Lin DL, Palva A & Steele JL (1995) Sequence analysis, distribution and expression of an aminopeptidase N-encoding gene from Lactobacillus helveticus CNRZ32. Gene 155: 89-93Google Scholar
  38. Christensen JE & Steele JL (1996) Characterization of peptidase-deficient Lactobacillus helveticus CNRZ32 derivatives. Fifth Symposium on Lactic Acid Bacteria, Veldhoven, The NetherlandsGoogle Scholar
  39. Christensen JE & Steele JL (1998a) Hydrolysis of casein derived peptides by peptidase-deficient Lactobacillus helveticus CNRZ32 derivatives. Joint Meeting of the American Dairy Science Association and the American Society of Animal Science. Journal of Dairy Science, Denver, Colorado, USA.Google Scholar
  40. Christensen JE & Steele JL (1998b) Unpublished resultsGoogle Scholar
  41. Collins MD, Rodrigues U, Ash C, Aguirre M, Farrow JAE, Martinez-Murcia A, Phillips BA, Williams AM & Wallbanks S (1991) Phylogenetic analysis of the genus Lactobacillus and related lactic acid bacteria as determined by reverse transcriptase sequencing of 16S rRNA. FEMS Microbiol. Lett. 77: 5-12Google Scholar
  42. Copeland WC, Domena JD & Robertus JD (1989) The molecular cloning, sequence and expression of the hdcB gene from Lactobacillus 30A. Gene 85: 259-265Google Scholar
  43. Crow VL & Thomas TD (1982) Arginine metabolism in lactic streptococci. J. Bacteriol. 150: 1024-1032Google Scholar
  44. Cunin R, Glansdorff N, Piérard A & Stalon V (1986) Biosynthesis and metabolism of arginine in bacteria. Microbiol. Rev. 50: 314-352Google Scholar
  45. de Mendoza D, Grau R & Cronan JE Jr (1993) Biosynthesis and function of membrane lipids. In: Sonenshein AL, Hock JA & Losick R (Eds) Bacillus subtilis and other gram-positive bacteria: biochemistry, physiology, and molecular genetics, (pp 411-421). American Society for Microbiology, Washington, DCGoogle Scholar
  46. Desmazeaud MJ & Zevaco C (1976) General properties and substrate specificity of an intracellular neutral protease from Streptococcus diacetilactis. Ann. Biol. Anim. Biochim. Biophys. 16: 851-868Google Scholar
  47. Desmazeaud MJ & Zevaco C (1977) General properties and substrate specificity of an intracellular soluble dipeptidase from Streptococcus diacetilactis. Ann. Biol. Anim. Biochim. Biophys. 17: 723-736Google Scholar
  48. Desmazeaud MJ & Zevaco C (1979) Isolation and general properties of two intracellular amino peptidases of Streptococcus diacetylactis. Milchwissenschaft 34: 606-610Google Scholar
  49. Detmers FJM, Kunji ERS, Lanfermeijer FC, Poolman B & Konings WN (1998) Kinetics and specificity of peptide uptake by the oligopeptide transport system of Lactococcus lactis. Biochem. 37: 16671-16679Google Scholar
  50. Doeglas HM, Huisman J & Nater JP (1967) Histamine intoxication after cheese. Lancet 2: 1361-1372Google Scholar
  51. Dudley EG, Husgen AC, He W & Steele JL (1996) Sequencing, distribution, and inactivation of the dipeptidase A gene (pepDA) from Lactobacillus helveticus CNRZ32. J. Bacteriol. 178: 701-704Google Scholar
  52. Dudley EG & Steele JL (1994) Nucleotide sequence and distribution of the pepPN gene from Lactobacillus helveticus CNRZ32. FEMS Microbiol. Lett. 119: 41-45Google Scholar
  53. Dudley EG & Steele JL (1999) Characterization and inactivation of the aspartate aminotransferase gene from Lactococcus lactis LM0230. Manuscript in preparationGoogle Scholar
  54. Dunn HC & Lindsay RC (1985) Evaluation of the role of microbial Strecker-derived aroma compounds in unclean-type flavors of Cheddar cheese. J. Dairy Sci. 68: 2859-2874Google Scholar
  55. Eggimann B & Bachmann M (1980) Purification and partial characterization of an aminopeptidase from Lactobacillus lactis. Appl. Environ. Microbiol. 40: 876-882Google Scholar
  56. Exterkate FA, De Jong M, De Veer GJCM & Baankreis R (1992) Location and characterization of aminopeptidase N in Lactococcus lactis ssp. cremoris HP. Appl. Microbiol. Biotech. 37: 46-54Google Scholar
  57. Exterkate FA & De Veer GJCM (1987) Purification and some properties of a membrane-bound aminopeptidase A from Streptococcus cremoris. Appl. Environ. Microbiol. 53: 577-583Google Scholar
  58. Feil IK, Hendle J & Schomburg D (1997) Modified substrate specificity of L-hydroxyisocaproate dehydrogenase derived from structure-based protein engineering. Protein Eng 10: 255-262Google Scholar
  59. Feil IK, Lerch HP & Schomburg D (1994) Deletion variants of L-hydroxyisocaproate dehydrogenase. Probing substrate specificity. Eur. J. Biochem. 223: 857-863Google Scholar
  60. Fenster KM, Parkin KL & Steele JL (1997) Characterization of a thiol-dependent endopeptidase from Lactobacillus helveticus CNRZ32. J. Bacteriol. 179: 2529-2533Google Scholar
  61. Fernández de Palencia P, López de Felipe F, Requena T & Peláez C (1999) The aminopeptidase C (PepC) from Lactobacillus helveticus CNRZ32. A comparative study of PepC from dairy lactic acid bacteria. SubmittedGoogle Scholar
  62. Fernández de Palencia P, Pelaez C & Martín-Hernández MC (1997) Characterization of the aminopeptidase system from Lactobacillus casei subsp. casei IFPL 731. J. Agric. Food Chem. 45: 3778-3781Google Scholar
  63. Fernández L, Bhowmik T & Steele JL (1994) Characterization of the Lactobacillus helveticus CNRZ32 pepC gene. Appl. Environ. Microbiol. 60: 333-336Google Scholar
  64. Fernández-Esplá MD & Martín-Hernández MC (1997) Purification and characterization of a dipeptidase from Lactobacillus casei ssp. casei IFPL 731 isolated from goat cheese made from raw milk. J. Dairy Sci. 80: 1497-1504Google Scholar
  65. Fernández-Esplá MD, Martín-Hernández MC & Fox PF (1997) Purification and characterization of a prolidase from Lactobacillus casei subsp. casei IFPL 731. Appl. Environ. Microbiol. 63: 314-316Google Scholar
  66. Gao S, Mooberry ES & Steele JL (1998) Use of 13C nuclear magnetic resonance and gas chromatography to examine methionine catabolism by lactococci. Appl. Environ. Microbiol. 64: 4670-4675Google Scholar
  67. Gao S, Oh DH, Broadbent JR, Johnson ME, Weimer BC & Steele JL (1997) Aromatic amino acid catabolism by lactococci. Lait 77: 371-381Google Scholar
  68. Gao S & Steele JL (1998) Purification and characterization of oligomeric species of an aromatic amino acid aminotransferase from Lactococcus lactis subsp. lactis S3. J. Food Biochem. 22: 197-211Google Scholar
  69. Geis A, Bockelmann W & Teuber M (1985) Simultaneous extraction and purification of a cell wall-associated peptidase and beta-casein specific protease from Streptococcus cremoris AC1. Appl. Microbiol. Biotech. 23: 79-84Google Scholar
  70. Gilbert C, Atlan D, Blanc B & Portalier R (1994) Proline iminopeptidase from Lactobacillus delbrueckii subsp. bulgaricus CNRZ 397: Purification and characterization. Microbiol. 140: 537-542Google Scholar
  71. Gobbetti M, Smacchi E & Corsetti A (1996) The proteolytic system of Lactobacillus sanfrancisco CB1: Purification and characterization of a proteinase, a dipeptidase, and an aminopeptidase. Appl. Environ. Microbiol. 62: 3220-3226Google Scholar
  72. Gottesman S & Maurizi MR (1992) Regulation by proteolysis: energy-dependent proteases and their targets. Microbiol Rev 56: 592-621Google Scholar
  73. Griffith R & Hammond EG (1989) Generation of Swiss cheese flavor components by the reaction of amino acids with carbonyl compounds. J. Dairy Sci. 72: 604-613Google Scholar
  74. Guirard BM & Snell EE (1964) Nutritional requirements of Lactobacillus 30a for growth and histidine decarboxylase production. J. Bacteriol. 87: 370-376Google Scholar
  75. Gummalla S (1998) Tryptophan catabolism by Lactobacillus spp.: Biochemistry and implications on flavor development in reduced-fat cheddar cheese. Master of Science thesis, Utah State UniversityGoogle Scholar
  76. Gummalla S & Broadbent JR (1996) Indole production by Lactobacillus ssp. in cheese: a possible role for tryptophanase. J. Dairy Sci. 79(Suppl. 1): 101Google Scholar
  77. Guthrie BD (1993) Influence of cheese-related microflora on the production of unclean-flavored aromatic amino acid metabolites in Cheddar cheese. Ph.D thesis, University of Wisconsin-MadisonGoogle Scholar
  78. Ha KJ & Lindsay RC (1991a) Contributions of cow, sheep, and goat milks to characterizing branched-chain fatty acid and phenolic flavors in varietal cheeses. J. Dairy Sci. 74: 3267-3274Google Scholar
  79. Ha KJ & Lindsay RC (1991b) Volatile branched-chain fatty acids and phenolic compounds in aged Italian cheese flavors. J. Food Sci. 56: 1241-1247, 1250Google Scholar
  80. Habibi-Najafi MB & Lee BH (1994) Purification and characterization of X-prolyl dipeptidyl peptidase from Lactobacillus casei subsp. casei LLG. Appl. Microbiol. Biotech. 42: 280-286Google Scholar
  81. Hackert ML, Meador WE, Oliver RM, Salmon JB, Recsei PA & Snell EE (1981) Crystallization and subunit structure of histidine decarboxylase from Lactobacillus 30a. J. Biol. Chem. 256: 687-690Google Scholar
  82. Harrison GA, Khairallah EA & Morgan ME (1969) Alcohol dehydrogenase in Streptococcus lactis var. maltigenes: In vivo relationship to glycolysis, in vitro kinetics, poster P109. American Society for Microbiology 69th Annual Meeting, 4-9 May, Miami Beach, FlaGoogle Scholar
  83. Hellendoorn MA, Franke-Fayard BMD, Mierau I, Venema G & Kok J (1997) Cloning and analysis of the pepV dipeptidase gene of Lactococcus lactis MG1363. J. Bacteriol. 179: 3410-3415Google Scholar
  84. Hickey MW, Hillier AJ & Jago GR (1983) Enzymic activities associated with lactobacilli in dairy products. Aust. J. Dairy Technol. 38: 154-157Google Scholar
  85. Higuchi T, Hayashi H & Abe K (1997) Exchange of glutamate and γ-aminobutyrate in a Lactobacillus strain. J. Bacteriol. 179: 3362-3364Google Scholar
  86. Hoffman K, Bucher P, Falquet L & Bairoch A (1999) The PROSITE database, its status in 1999. Nuc. Acids Res. 27: 215-219Google Scholar
  87. Honeyfield DC & Carlson JR (1990) Assay for the enzymatic conversion of indoleacetic acid to 3-methylindole in a ruminal Lactobacillus species. Appl. Environ. Microbiol. 56: 724-729Google Scholar
  88. Houbart V, Ribadeau-Dumas B & Chich JF (1995) Synthesis of enterostatin-amide by the Xaa-prolyl dipeptidyl aminopeptidase from Lactococcus lactis subsp. lactis NCDO 763. Biotech. Appl. Biochem. 21: 149-159Google Scholar
  89. Hummel W & Kula MR (1989) Dehydrogenases for the synthesis of chiral compounds. Eur. J. Biochem. 184: 1-13Google Scholar
  90. Hummel W, Schmidt E, Wandrey C & Kula MR (1986) L-phenylalanine dehydrogenase from Brevibacterium sp. for the production of L-phenylalaine by reductive amination of phenylpyruvate. Appl. Microbiol. Biotechnol. 25: 175-185Google Scholar
  91. Hummel W, Schütte H & Kula M-R (1985) D-2-hydroxyisocaproate dehydrogenase from Lactobacillus casei. Appl. Microbiol. Biotechnol. 21: 7-15Google Scholar
  92. Hummel W, Schütte H & Kula M-R (1988) D-(-)-mandelic acid dehydrogenase from Lactobacillus curvatus. Appl. Microbiol. Biotechnol. 28: 433-439Google Scholar
  93. Hummel W, Weiss N & Kula MR (1984) Isolation and characterization of a bacterium possessing L-phenylalanine dehydrogenase activity. Arch. Microbiol. 137: 47-52Google Scholar
  94. Huynh QK, Recsei PA, Vaaler GL & Snell EE (1984) Histidine decarboxylase of Lactobacillus 30a. Sequences of the overlapping peptides, the complete alpha chain, and prohistidine decarboxylase. J. Biol. Chem. 259: 2833-2839Google Scholar
  95. Hwang IK, Kaminogawa S & Yamauchi K (1981) Purification and properties of a dipeptidase from Streptococcus cremoris. Agric. Biol. Chem. 45: 159-166Google Scholar
  96. Jackson HW & Morgan ME (1954) Identity and origin of the malty aroma substance from milk cultures of Streptococcus lactis var. maltigenes. J. Dairy Sci. 37: 1316-1324Google Scholar
  97. Joosten HM & Northolt MD (1989) Detection, growth, and amine-producing capacity of lactobacilli in cheese. Appl. Environ. Microbiol. 55: 2356-2359Google Scholar
  98. Joosten HM & Stadhouders J (1987) Conditions allowing the formation of biogenic amines in cheese. 1. Decarboxylative properties of starter bacteria. Neth. Milk Dairy J. 41: 247-258Google Scholar
  99. Joshua-Tor L, Xu HE, Johnston SA & Rees DC (1995) Crystal structure of a conserved protease that binds DNA: the bleomycin hydrolase, Gal6. Science 269: 945-950Google Scholar
  100. Kahana LM & Todd E (1981) Histamine poisoning and reaction to cheese. Ann. Intern. Med. 88: 520-521Google Scholar
  101. Kallwass HKW (1992) Potential of R-2-hydroxyisocaproate dehydrogenase from Lactobacillus casei for stereospecific reductions. Enzyme Microb. Technol. 14: 28-35Google Scholar
  102. Kaminogawa S, Azuma N, Hwang IK, Suzuki Y & Yamauchi K (1984) Isolation and characterization of a prolidase from Streptococcus cremoris H61. Agric. Biol. Chem. 48: 3035-3040Google Scholar
  103. Khalid NM & Marth EH (1990a) Partial purification and characterization of an aminopeptidase from Lactobacillus helveticus CNRZ 32. Syst. Appl. Microbiol. 13: 311-319Google Scholar
  104. Khalid NM & Marth EH (1990b) Purification and partial characterization of a prolyl-dipeptidyl aminopeptidase from Lactobacillus helveticus CNRZ 32. Appl. Environ. Microbiol. 56: 381-388Google Scholar
  105. Kiefer-Partsch B, Bockelmann W, Geis A & Teuber M (1989) Purification of an X-prolyldipeptidyl aminopeptidase from the cell wall proteolytic system of Lactococcus lactis ssp. cremoris. Appl. Microbiol. Biotech. 31: 75-78Google Scholar
  106. Kingsley R, Rabsch W, Roberts M, Reissbrodt R & Williams PH (1996) TonB-dependent iron supply in Salmonella by α-ketoacids and α-hydroxyacids. FEMS Microbiol. Lett. 140: 65-70Google Scholar
  107. Klein JR, Dick A, Schick J, Matern HT, Henrich B & Plapp R (1995) Molecular cloning and DNA sequence analysis of pepL, a leucyl aminopeptidase gene from Lactobacillus delbrueckii subsp. lactis DSM7290. Eur. J. Biochem. 228: 570-578Google Scholar
  108. Klein JR, Henrich B & Plapp R (1994a) Cloning and nucleotide sequence analysis of the Lactobacillus delbrueckii ssp. lactis DSM7290 cysteine aminopeptidase gene pepC. FEMS Microbiol. Lett. 124: 291-299Google Scholar
  109. Klein JR, Klein U, Schad M & Plapp R (1993) Cloning, DNA sequence analysis and partial characterization of pepN, a lysyl aminopeptidase from Lactobacillus delbrueckii ssp. lactis DSM7290. Eur. J. Biochem. 217: 105-114Google Scholar
  110. Klein JR, Schick J, Henrich B & Plapp R (1997) Lactobacillus delbrueckii subsp. lactis DSM7290 pepG gene encodes a novel cysteine aminopeptidase. Microbiol. 143: 527-537Google Scholar
  111. Klein JR, Schmidt U & Plapp R (1994b) Cloning, heterologous expression, and sequencing of a novel proline iminopeptidase gene, pepI, from Lactobacillus delbrueckii subsp. lactis DSM 7290. Microbiol. 140: 1133-1139Google Scholar
  112. Kochhar S, Hunziker PE, Leong-Morgenthaler P & Hottinger H (1992) Evolutionary relationship of NAD+-dependent D-lactate dehydrogenase: comparison of primary structure of 2-hydroxy acid dehydrogenases. Biochem. Biophys. Res. Comm. 184: 60-66Google Scholar
  113. Kong Y, Strickland M & Broadbent JR (1996) Tyrosine and phenylalanine catabolism by Lactobacillus casei flavor adjuncts: biochemistry and implications in cheese flavor. J. Dairy Sci. 79(Suppl. 1): 101Google Scholar
  114. Konings WN, Lolkema JS, Bolhuis H, van Veen HW, Poolman B & Driessen AJ (1997) The role of transport processes in survival of lactic acid bacteria. Energy transduction and multidrug resistance. Antonie Van Leeuwenhoek 71: 117-128Google Scholar
  115. Konings WN, Lolkema JS & Poolman B (1995) The generation of metabolic energy by solute transport. Arch. Microbiol. 164: 235-242Google Scholar
  116. Kunji ERS, Fang G, Jeronimus-Stratingh CM, Bruins AP, Poolman B & Konings WN (1998) Reconstruction of the proteolytic pathway for use of beta-casein by Lactococcus lactis. Mol. Microbiol. 27: 1107-1118Google Scholar
  117. Kunji ERS, Hagting A, De Vries CJ, Juillard V, Haandrikman AJ, Poolman B & Konings WN (1995) Transport of beta-casein derived peptides by the oligopeptide transport system is a crucial step in the proteolytic pathway of Lactococcus lactis. J. Biol. Chem. 270: 1569-1574Google Scholar
  118. Kunji ERS, Mierau I, Hagting A, Poolman B & Konings WN (1996) The proteolytic systems of lactic acid bacteria. Antonie van Leeuwenhoek 70: 187-221Google Scholar
  119. l'Anson KJA, Movahedi S, Griffin HG, Gasson MJ & Mulholland F (1995) A non-essential glutamyl aminopeptidase is required for optimal growth of Lactococcus lactis MG1363 in milk. Microbiol. 141: 2873-2881Google Scholar
  120. Lapujade P, Cocaign-Bousquet M & Loubiere P (1998) Glutamate biosynthesis in Lactococcus lactis subsp. lactis NCDO 2118. Appl. Environ. Microbiol. 64: 2485-2489Google Scholar
  121. Law BA (1981) The formation of aroma and flavor compounds in fermented dairy products. Dairy Sci. Abstr. 43: 143Google Scholar
  122. Law J & Haandrikman A (1997) Proteolytic enzymes of lactic acid bacteria. Int. Dairy. J. 7: 1-11Google Scholar
  123. Lees GJ & Jago GR (1976) Formation of acetaldehyde from threonine by lactic acid bacteria. J. Dairy Res. 43: 75-83Google Scholar
  124. Lerch H-P, Frank R & Collins J (1989) Cloning, sequencing and expression of the L-2-hydroxyisocaproate dehydrogenase-encoding gene of Lactobacillus confusus in Escherichia coli. Gene 83: 263-270Google Scholar
  125. Lian W, Wu D, Konings WN, Mierau I & Hersh LB (1996) Heterologous expression and characterization of recombinant Lactococcus lactis neutral endopeptidase (Neprilysin). Arch. Biochem. Biophys. 333: 121-126Google Scholar
  126. Liu S-Q & Pilone GJ (1998) A review: arginine metabolism in wine lactic acid bacteria and its practical significance. J. Appl. Microbiol. 84: 315-327Google Scholar
  127. Liu S-Q, Pritchard GG, Hardman MJ & Pilone GJ (1995) Occurance of arginine deiminase pathway enzymes in arginine catabolism by wine lactic acid bacteria. Appl. Environ. Microbiol. 61: 310-316Google Scholar
  128. Lloyd RJ & Pritchard GG (1991) Characterization of X-prolyldipeptidylaminopeptidase from Lactococcus lactis ssp. lactis. J. Gen. Microbiol. 137: 49-56Google Scholar
  129. Machuga EJ & Ives DH (1984) Isolation and characterization of an aminopeptidase (EC 3.4.11.1) from Lactobacillus acidophilus R-26. Biochim. Biophys. Acta 789: 26-36Google Scholar
  130. MacLeod P & Morgan ME (1958) Differences in the ability of lactic streptococci to form aldehydes from certain amino acids. J. Dairy Sci. 41: 908-913Google Scholar
  131. Magboul AAA & McSweeney PLH (1998) Purification and characterisation of an aminopeptidase from Lactobacillus curvatus DPC 2024. Aust. J. Dairy Tech. 53: 114Google Scholar
  132. Manca de Nadra MC, Pese de Ruiz Holgado AA & Oliver G (1982) Arginine dihydrolase activity in lactic acid bacteria. Milchwissenschaft 37: 669-670Google Scholar
  133. Manca De Nadra MC, Raya RR, Pesce De Ruiz Holgado A & Oliver G (1987) Isolation and properties of threonine aldolase of Lactobacillus bulgaricus YOP12. Milchwissenschaft 42: 92-94Google Scholar
  134. Marquis RE, Bender GR, Murray DR & Wong A (1987) Arginine deiminase system and bacterial adaptation to acid environments. Appl. Environ. Microbiol. 53: 198-200Google Scholar
  135. Marranzini RM, Schmidt RH, Shireman RB, Marshall MR & Cornell JA (1989) Effect of threonine and glycine concentrations on threonine aldolase activity of yogurt microorganisms during growth in a modified milk prepared by ultrafiltration. J. Dairy Sci. 72: 1142-1148Google Scholar
  136. Mars I & Monnet V (1995) An aminopeptidase P from Lactococcus lactis with original specificity. Biochim. Biophys. Acta 1243: 209-215Google Scholar
  137. Marshall VM & Cole WM (1983) Threonine aldolase and alcohol dehydrogenase activities in Lactobacillus bulgaricus and Lactobacillus acidophilus and their contribution to flavour production in fermented milks. J. Dairy Res. 50: 375-379Google Scholar
  138. Marugg JD, Meijer W, van Kranenburg R, Laverman P, Bruinenberg PG & de Vos WM (1995) Medium-dependent regulation of proteinase gene expression in Lactococcus lactis: control of transcription initiation by specific dipeptides. J. Bacteriol. 177: 2982-2989Google Scholar
  139. Massey LK, Sokatch JR & Conrad RS (1976) Branched-chain amino acid catabolism in bacteria. Bacteriol. Rev. 40: 42-54Google Scholar
  140. Masson F, Eclache L, Compte T, Talon R & Montel MC (1996) Screening of microbial strains producing amines and isolated from meat products. In Proceedings of 42nd International Congress of meat science and technology, pp 546-547, Sept. 1-6, Lillehammer, NorwayGoogle Scholar
  141. Mata L, Erra-Pujada M, Gripon J-C & Mistou M-Y (1997) Experimental evidence for the essential role of the C-terminal residue in the strict aminopeptidase activity of the thiol aminopeptidase PepC, a bacterial bleomycin hydrolase. Biochem. J. 328: 343-347Google Scholar
  142. Mathiopoulos C, Mueller JP, Slack FJ, Murphy CG, Patankar S, Bukusoglu G & Sonenshein AL (1991) A Bacillus subtilis dipeptide transport system expressed early during sporulation. Mol Microbiol 5: 1903-1913Google Scholar
  143. Matos J, Nardi M, Kumura H & Monnet V (1998) Genetic characterization of PepP, which encodes an aminopeptidase P whose deficiency does not affect Lactococcus lactis growth in milk, unlike deficiency of the X-Prolyl dipeptidyl aminopeptidase. Appl. Environ. Microbiol. 64: 4591-4595Google Scholar
  144. Mayo B, Kok J, Bockelmann W, Haandrikman A, Leenhouts KJ & Venema G (1993) Effect of X-prolyl dipeptidyl aminopeptidase deficiency on Lactococcus lactis. Appl. Environ. Microbiol. 59: 2049-2055Google Scholar
  145. Mayo B, Kok J, Venema K, Bockelmann W, Teuber M, Reinke H & Venema G (1991) Molecular cloning and sequence analysis of the X-prolyldipeptidyl aminopeptidase gene from Lactococcus lactis ssp. cremoris. Appl. Environ. Microbiol. 57: 38-44Google Scholar
  146. McCabe BJ (1986) Dietary tyramine and other pressor amines in MAOI regimens: A review. J. Amer. Diet. Assoc. 86: 1059-1064Google Scholar
  147. Meijer W, Marugg JD & Hugenholtz J (1996) Regulation of proteolytic enzyme activity in Lactococcus lactis. Appl. Environ. Microbiol. 62: 156-161Google Scholar
  148. Meyer J & Jordi R (1987) Purification and characterization of X-prolyldipeptidylaminopeptidase from Lactobacillus lactis and from Streptococcus thermophilus. J. Dairy Sci. 70: 738-745Google Scholar
  149. Meyer-Barton EC, Klein JR, Imam M & Plapp R (1993) Cloning and sequence analysis of the X-prolyl-dipeptidyl-aminopeptidase gene (pepX) from Lactobacillus delbrueckii ssp. lactis DSM7290. Appl. Microbiol. Biotech. 40: 82-89Google Scholar
  150. Midwinter RG & Pritchard GG (1994) Aminopeptidase N from Streptococcus salivarius subsp. thermophilus NCDO 573: Purification and properties. J. Appl. Bacteriol. 77: 288-295Google Scholar
  151. Mierau I, Haandrikman AJ, Velterop O, Tan PST, Leenhouts KL, Konings WN, Venema G & Kok J (1994) Tripeptidase gene (pepT) of Lactococcus lactis: Molecular cloning and nucleotide sequencing of pepT and construction of a chromosomal deletion mutant. J. Bacteriol. 176: 2854-2861Google Scholar
  152. Mierau I, Kunji ERS, Leenhouts KJ, Hellendoorn MA, Haandrikman AJ, Poolman B, Konings WN, Venema G & Kok J (1996a) Multiple-peptidase mutants of Lactococcus lactis are severely impaired in their ability to grow in milk. J. Bacteriol. 178: 2794-2803Google Scholar
  153. Mierau I, Kunji ERS, Venema G, Poolman B & Kok J (1996b) Peptidases and growth of Lactococcus lactis in milk. Lait 76: 25-32Google Scholar
  154. Mierau I, Tan PST, Haandrikman AJ, Mayo B, Kok J, Leenhouts KJ, Konings WN & Venema G (1993) Cloning and sequencing of the gene for a lactococcal endopeptidase, an enzyme with sequence similarity to mammalian enkephalinase. J. Bacteriol. 175: 2087-2096Google Scholar
  155. Miller A, Morgan ME & Libbey LM (1974) Lactobacillus maltaromicus, a new species producing a malty aroma. Int. J. System. Bacteriol. 24: 346-354Google Scholar
  156. Miller CG (1987) Protein degradation and proteolytic modification. Pages 680-691 in FC Neidhardt JLI, KB Low, B Magasanik, M Schaechter & HE Umbarger (Ed.) Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, DCGoogle Scholar
  157. Miller CG & Green L (1981) Degradation of abnormal proteins in peptidase-deficient mutants of Salmonella typhimurium. J. Bacteriol. 147: 925-930Google Scholar
  158. Miller CG & Green L (1983) Degradation of proline peptides in peptidase-deficient strains of Salmonella typhimurium. J. Bacteriol. 153: 350-356Google Scholar
  159. Milo C & Reineccius GA (1997) Identification and quantification of potent odorants in regular-fat and low-fat mild Cheddar cheese. J. Agric. Food Chem. 45: 3590-3594Google Scholar
  160. Misono H, Goto N & Nagasaki S (1985) Purification, crystallization and properties of NADP+-specific glutamate dehydrogenase from Lactobacillus fermentum. Agric. Biol. Chem. 49: 117-123Google Scholar
  161. Mistou M-Y & Gripon J-C (1998) Catalytic properties of the cysteine aminopeptidase PepC, a bacterial bleomycin hydrolase. Biochim. Biophys. Acta 3: 63-70Google Scholar
  162. Mistou M-Y, Rigolet P, Chapot-Chartier MP, Nardi M, Gripon J-C & Brunie S (1994) Crystallization and preliminary X-ray analysis of PepC, a thiol aminopeptidase from Lactococcus lactis homologous to bleomycin hydrolase. J. Mol. Biol. 237: 160-162Google Scholar
  163. Miyakawa H, Hashimoto I, Nakamura T, Ishibashi N, Shimamura S & Igoshi K (1994) Purification and characterization of an X-prolyl dipeptidyl aminopeptidase from Lactobacillus helveticus LHE-511. Milchwissenschaft 49: 670-673Google Scholar
  164. Miyakawa H, Kobayashi S, Shimamura S & Tomita M (1991) Purification and characterization of an X-prolyldipeptidyl aminopeptidase from Lactobacillus delbrueckii ssp. bulgaricus LBU-147. J. Dairy Sci. 74: 2375-2381Google Scholar
  165. Miyakawa H, Kobayashi S, Shimamura S & Tomita M (1992) Purification and characterization of an aminopeptidase from Lactobacillus helveticus LHE-511. J. Dairy Sci. 75: 27-35Google Scholar
  166. Molenaar D, Bosscher JS, Ten Brink B, Driessen AJM & Konings WN (1993) Generation of a proton motive force by histidine decarboxylation and electrogenic histidine/histamine antiport in Lactobacillus buchneri. J. Bacteriol. 175: 2864-2870Google Scholar
  167. Monnet V, Nardi M, Chopin A, Chopin M-C & Gripon J-C (1994) Biochemical and genetic characterization of PepF, an oligopeptidase from Lactococcus lactis. J. Biol. Chem. 269: 32070-32076Google Scholar
  168. Montel MC, Seronie MP, Talon R & Hebraud M (1995) Purification and characterization of a dipeptidase from Lactobacillus sake. Appl. Environ. Microbiol. 61: 837-839Google Scholar
  169. Morel F, Frot-Coutaz J, Aubel D, Portalier R & Atlan D (1997) Direct sequence submission to GenBank for a prolidase from Lactobacillus debrueckii ssp. bulgaricus CNRZ397 (Accession 3821250). UnpublishedGoogle Scholar
  170. Morel F, Gilbert C, Geourjon C, Frot-Coutaz J, Portalier R & Atlan D (1999a) The prolyl aminopeptidase from Lactobacillus delbrueckii subsp. bulgaricus belongs to the alpha/beta hydrolase fold family. Biochim. Biophys. Acta-Protein Struct. Molec. Enzym. 1429: 501-505Google Scholar
  171. Morel F, Frot-Coutaz J, Aubel D, Portalier R & Atlan D (1999b) Characterization of a prolidase from Lactobacillus delbrueckii subsp. bulgaricus CNRZ 397 with an unusual regulation of biosynthesis. Microbiol. 145:437-446Google Scholar
  172. Morgan ME, Lindsay RC, Libbey LM & Pereira RL (1965) Identity of additional aroma constituents in milk cultures of Streptococcus lactis var. maltigenes. J. Dairy Sci. 49: 15-18Google Scholar
  173. Morishita T & Yajima M (1995) Incomplete operation of biosynthetic and bioenergetic functions of the citric acid cycle in multiple auxotrophic lactobacilli. Biosci. Biotech. Biochem. 59: 251-255Google Scholar
  174. Morita H, Yoshikawa H, Sakata R, Nagata Y & Tanaka H (1997) Synthesis of nitric oxide from the two equivatent guanidino nitrogens of L-arginine by Lactobacillus fermentum. J. Bacteriol. 179: 7812-7815Google Scholar
  175. Muset G, Monnet V & Gripon JC (1989) Intracellular proteinase of Lactococcus lactis ssp. lactis NCDO 763. J. Dairy Res. 56: 765-778Google Scholar
  176. Nakae T & Elliott JA (1965) Production of volatile fatty acids by some lactic acid bacteria. II. Selective formation of volatile fatty acids by degradation of amino acids. J. Dairy Sci. 48: 293-299Google Scholar
  177. Nardi M, Chopin MC, Chopin A, Cals MM & Gripon JC (1991) Cloning and DNA sequence analysis of an X-prolyldipeptidyl aminopeptidase gene from Lactococcus lactis ssp. lactis NCDO 763. Appl. Environ. Microbiol. 57: 45-50Google Scholar
  178. Nardi M, Renault P & Monnet V (1997) Duplication of the pepF gene and shuffling of DNA fragments on the lactose plasmid of Lactococcus lactis. J. Bacteriol. 179: 4164-4171Google Scholar
  179. Neviani E, Boquien CY, Monnet V, Thanh LP & Gripon JC (1989) Purification and characterization of an aminopeptidase from Lactococcus lactis ssp. cremoris AM2. Appl. Environ. Microbiol. 55: 2308-2314Google Scholar
  180. Nierop Groot MN & de Bont JAM (1998) Conversion of phenylalanine to benzaldehyde initialed by an aminotransferase in Lactobacillus plantarum. Appl. Environ. Microbiol. 64: 3009-3013Google Scholar
  181. Niven GW (1991) Purification and characterization of aminopeptidase A from Lactococcus lactis ssp. lactis NCDO 712. J. Gen. Microbiol. 137: 1207-1212Google Scholar
  182. Ohmiya K & Sato Y (1975) Purification and properties of intracellular proteinase from Streptococcus cremoris. Applied Microbiology 30: 738-745Google Scholar
  183. Parks EH, Ernst SR, Hamlin R, Xuong NH & Hackert ML (1985) Structure determination of histidine decarboxylase from Lactobacillus 30a al 3.0 A resolution. J. Mol. Biol. 182: 455-465Google Scholar
  184. Patton S (1964) Volatile acids of Swiss cheese. J. Dairy Sci. 47: 817-818Google Scholar
  185. Paulsen PV, Kowalewska J, Hammond EG & Glatz BA (1980) Role of micro flora in production of free fatty acids and flavor in Swiss cheese. J. Dairy Sci. 63: 912-918Google Scholar
  186. Paulus H (1993) Biosynthesis of the aspartate family of amino acids. In: Sonenshein AL, Hock JA & Losick R (Eds) Bacillus subtilis and other gram-positive bacteria: biochemistry, physiology, and molecular genetics, (pp 237-267). American Society for Microbiology, Washington, DCGoogle Scholar
  187. Perego M, Higgins CF, Pearce SR, Gallagher MP & Hoch JA (1991) The oligopeptide transport system of Bacillus subtilis plays a role in the initiation of sporulation. Mol Microbiol 5: 173-185Google Scholar
  188. Preininger M & Grosch W (1994) Evaluation of key odorants of the neutral volatiles of Emmentaler cheese by calculation of odour activity values. Lebensm. Wiss. Technol. 27: 237-244Google Scholar
  189. Preininger M, Warmke R & Grosch W (1996) Identification of the character impact flavour compounds of Swiss cheese by sensory studies of models. Z. Lebensm. Unters. Forsch. 202: 30-34Google Scholar
  190. Pritchard GG, Freebairn AD & Coolbear T (1994) Purification and characterization of an endopeptidase from Lactococcus lactis subsp. cremoris SK11. Microbiol. 140: 923-930Google Scholar
  191. Rallu F, Grass A & Maguin E (1996) Lactococcus lactis and stress. Antonie van Leeuwenhoek 70: 243-251Google Scholar
  192. Rantanen T & Palva A (1997) Lactobacilli carry cryptic genes encoding peptidase-related proteins: Characterization of a prolidase gene (pepQ) and a related cryptic gene (orfZ) from Lactobacillus delbrueckii subsp. bulgaricus. Microbiol. 143: 3899-3905Google Scholar
  193. Rawlings ND, Polgar L & Barrett AJ (1991) A new family of serine-type peptidases related lo prolyl oligopeptidase [letter]. Biochem J 279: 907-908Google Scholar
  194. Recsei PA, Huynh QK & Snell EE (1983) Conversion of prohistidine decarboxylase lo histidine decarboxylase: peptide chain cleavage by nonhydrolytic serinolysis. Proc. Nail. Acad. Sci. USA 80: 973-977Google Scholar
  195. Rescei PA & Snell EE (1981) In: Metabolic interconversion of enzymes 1980 ed. H. Holzen, pp. 335-344. Springer-Verlag: New YorkGoogle Scholar
  196. Recsei PA & Snell EE (1984) Pyruvoyl enzymes. Annu. Rev. Biochem. 53: 357-387Google Scholar
  197. Reiter B & Oram JD (1962) Nutritional studies on cheese starters. I. Vitamin and amino acid requirements of single strain starters. J Dairy Res. 29: 63-77Google Scholar
  198. Roig-Sagues AX, Hernandez-Herrero MN, Lopez-Sabater EI, Rodriguez-Jerez JJ & Mora-Ventura MT (1997) Evaluation of three decarboxylating agar media lo detect histamine and tyramine-producing bacteria in ripened sausages. Lett. Appl. Microbiol. 25: 309-312Google Scholar
  199. Rollan G, de Nadra MCM, Holgado PR & Oliver G (1985) Aspartate metabolism in Lactobacillus murinus CNRS 313. I. Aspartase. J. Gen. Appl. Microbiol. 31: 403-409Google Scholar
  200. Rollan G, de Nadra MCM, Holgado PR & Oliver G (1988) Aspartate aminotransferase of Lactobacillus murinus. Folia Microbiol. 33: 344-348Google Scholar
  201. Roudot-Algaron F & Yvon M (1998) Le catabolisme des acides aminés aromatiques el des acides aminés à chaîne ramifiée chez Lactococcus lactis. Lait 78: 23-30Google Scholar
  202. Rul F, Gripon J-C & Monnet V (1995) St-PepA, a Streptococcus thermophilus aminopeptidase with high specificity for acidic residues. Microbiol. 141: 2281-2287Google Scholar
  203. Rul F, Monnet V & Gripon JC (1994) Purification and characterization of a general aminopeptidase (St-PepN) from Streptococcus salivarius ssp. thermophilus CNRZ 302. J. Dairy Sci. 77: 2880-2889Google Scholar
  204. Sahlstrøm S, Chrzanowska J & Sorhaug T (1993) Purification and characterization of a cell wall peptidase from Lactococcus lactis ssp. cremoris IMN-C12. Appl. Environ. Microbiol. 59: 3076-3082Google Scholar
  205. Sanders JW, Leenhouts K, Burghoorn J, Brands JR, Venema G & Kok J (1998) A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation. Mol. Microbiol. 27: 299-310Google Scholar
  206. Sandine WE & Elliker PR (1970) Microbially induced flavors in fermented dairy products. J. Agric. Food Chem. 18: 557Google Scholar
  207. Santos MH (1996) Biogenic amines: their importance in foods. Int. J. Food Microbiol. 29: 213-231Google Scholar
  208. Sanz Y, Mulholland F & Toldrá F (1998) Purification and characterization of a tripeptidase from Lactobacillus sake. J. Agric. Food Chem. 46: 349-353Google Scholar
  209. Sasaki M, Bosman BW & Tan PST (1996) A new, broad-substrate-specificity aminopeptidase from the dairy organism Lactobacillus helveticus SBT 2171. Microbiol. 142: 799-808Google Scholar
  210. Schütte H, Hummel W & Kula M-R (1984) L-2-hydroxyisocaproate dehydrogenase-a new enzyme from Lactobacillus confusus for the stereospecific reduction of 2-ketocarboxylic acids. Appl. Microbiol. Biotechnol. 19: 167-176Google Scholar
  211. Shankar PA (1977) Interrelationships of Streptococcus thermophilus and Lactobacillus bulgaricus in yoghurt culture. Thesis, University of Reading, Reading, UKGoogle Scholar
  212. Shao W, Yüksel GÜ, Dudley EG, Parkin KL & Steele JL (1997) Biochemical and molecular characterization of PepR, a dipeptidase, from Lactobacillus helveticus CNRZ32. Appl. Environ. Microbiol. 63: 3438-3443Google Scholar
  213. Sheldon RM, Lindsay RC, Libbey LM & Morgan ME (1971) Chemical nature of malty flavor and aroma produced by Streptococcus lactis var. maltigenes. Appl. Microbiol. 22: 263-266Google Scholar
  214. Simitsopoulou M, Vafopoulou A, Choli Papadopoulou T & Alichanidis E (1997) Purification and partial characterization of a tripeptidase from Pediococcus pentosaceus K9.2. Appl. Environ. Microbiol. 63: 4872-4876Google Scholar
  215. Stepaniak L & Fox PF (1995) Characterization of the principal intracellular endopeptidase from Lactococcus lactis subsp. lactis MG1363. Int. Dairy. J. 5: 699-713Google Scholar
  216. Stepaniak L, Gobbetti M, Pripp AH & Sorhaug T (1998a) Isolation and characterization of a 67 kDa oligopeptidase from Propionibacterium freudenreichii ATCC 9614. Ital. J Food Sci. 10: 117-125Google Scholar
  217. Stepaniak L, Gobbetti M & Sorhaug T (1998b) Isolation and characterization of high molecular mass endopeptidase complex from Lactococcus lactis. Milchwissenschaft 53: 255-259Google Scholar
  218. Stepaniak L, Tobiassen RO, Chukwu I, Pripp AH & Sorhaug T (1998c) Purification and characterization of a 33 kDa subunit oligopeptidase from Propionibacterium freudenreichii ATCC 9614. Int. Dairy. J. 8: 33-37Google Scholar
  219. Stratton JE, Hutkins RW, Sumner SS & Taylor SL (1992) Histamine and histamine-producing bacteria in retail Swiss and low-salt cheeses. J. Food Prot. 55: 435-439Google Scholar
  220. Straub BW, Kicherer M, Schilcher SM & Hammes WP (1995) The formation of biogenic amines by fermentation microorganisms. Z. Lebensm. Unters. For. 201: 79-82Google Scholar
  221. Støman P (1992) Sequence of a gene (lap) encoding a 95.3-kDa aminopeptidase from Lactococcus lactis ssp. cremoris Wg2. Gene 113: 107-112Google Scholar
  222. Stucky K, Klein JR, Schueller A, Matern H, Henrich B & Plapp R (1995) Cloning and DNA sequence analysis of pepQ, a prolidase gene from Lactobacillus delbrueckii subsp. lactis DSM7290 and partial characterization of its product. Mol. Gen. Genet. 247: 494-500Google Scholar
  223. Stucky K, Schick J, Klein JR, Henrich B & Plapp R (1996) Characterization of pepR1, a gene coding for a potential transcriptional regulator of Lactobacillus delbrueckii subsp. lactis DSM7290. FEMS Microbiol. Lett. 136: 63-69Google Scholar
  224. Tamime AY & Deeth HC (1980) Yogurt: technology and biochemistry. J. Food Prot. 43: 939Google Scholar
  225. Tan PST & Konings WN (1990) Purification and characterization of an aminopeptidase from Lactococcus lactis ssp. cremoris Wg2. Appl. Environ. Microbiol. 56: 526-532Google Scholar
  226. Tan PST, Pos KM & Konings WN (1991) Purification and characterization of an endopeptidase from Lactococcus lactis ssp. cremoris Wg2. Appl. Environ. Microbiol. 57: 3593-3599Google Scholar
  227. Tan PST, Sasaki M, Bosman BW & Iwasaki T (1995) Purification and characterization of a dipeptidase from Lactobacillus helveticus SBT 2171. Appl. Environ. Microbiol. 61: 3430-3435Google Scholar
  228. Tan PST, Van Alen Boerrigter IJ, Poolman B, Siezen RJ, De Vos WM & Konings WN (1992) Characterization of the Lactococcus lactis pepN gene encoding an aminopeptidase homologous to mammalian aminopeptidase N. FEBS Lett. 306: 9-16Google Scholar
  229. Tan PST, Van Kessel TAJM, Van De Veerdonk FLM, Zuurendonk PF, Bruins AP & Konings WN (1993) Degradation and debittering of a tryptic digest from beta-casein by aminopeptidase N from Lactococcus lactis ssp. cremoris WG2. Appl. Environ. Microbiol. 59: 1430-1436Google Scholar
  230. Taylor SL, Keefe TJ, Windham ES & Howell JF (1982) Outbreak of histamine poisoning associated with consumption of Swiss cheese. J. Food Prot. 45: 455-457Google Scholar
  231. ten Brink B, Damink C, Joosten HM & Huis in't Veld JH (1990) Occurrence and formation of biologically active amines in foods. Int. J. Food Microbiol. 11: 73-84Google Scholar
  232. Timpone D & Steele JL (1999) Unpublished observationsGoogle Scholar
  233. Tobiassen RO, Pripp AH, Stepaniak L & Sørhaug T (1996) Purification and characterization of an endopeptidase from Propionibacterium freudenreichii. J. Dairy Sci. 79: 2129-2136Google Scholar
  234. Tobiassen RO, Sørhaug T & Stephaniak L (1997) Characterization of an intracellular oligopeptidase from Lactobacillus paracasei. Appl. Environ. Microbiol. 63: 1284-1287Google Scholar
  235. Tsakalidou E, Anastasiou R, Papadimitriou K, Manolopoulou E & Kalantzopoulos G (1998) Purification and characterisation of an intracellular X-prolyl-dipeptidyl aminopeptidase from Streptococcus thermophilus ACA-DC 4. J. Biotech. 59: 203-211Google Scholar
  236. Tsakalidou E, Dalezios I, Georgalaki M & Kalantzopoulos G (1993) A comparative study: Aminopeptidase activities from Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus. J. Dairy Sci. 76: 2145-2151Google Scholar
  237. Tsakalidou E & Kalantzopoulos G (1992) Purification and partial characterization of an intracellular aminopeptidase from Streptococcus salivarius ssp. thermophilus strain ACA-DC 114. J. Appl. Bacteriol. 72: 227-232Google Scholar
  238. Tucker JS & Morgan ME (1967) Decarboxylation of α-keto acids by Streptococcus lactis var. maltigenes. Appl. Microbiol. 15: 694-700Google Scholar
  239. Tynkkynen S, Buist G, Kunji E, Kok J, Poolman B, Venema G & Haandrikman A (1993) Genetic and biochemical characterization of the oligopeptide transport system of Lactococcus lactis. J. Bacteriol. 175: 7523-7532Google Scholar
  240. Ueno Y, Hayakawa K, Takahashi S & Oda K (1997) Purification and characterization of glutamate decarboxylase from Lactobacillus brevis IFO 12005. Biosci. Biotech. Biochem. 61: 1168-1171Google Scholar
  241. Umbarger HE (1996) Biosynthesis of the branched-chain amino acids. In: Neidhardt FC (Ed) Escherichia coli and Salmonella: cellular and molecular biology, 2nd Ed, Vol 1 (pp 442-457). ASM Press, Washington DCGoogle Scholar
  242. Urbach G (1995) Contribution of lactic acid bacteria to flavor compound formation in dairy products. Int. Dairy J. 5: 877-903Google Scholar
  243. Van Alen-Boerrigter IJ, Baankreis R & De Vos WM (1991) Characterization and overexpression of the Lactococcus lactis pepN gene and localization of its product, aminopeptidase N. Appl. Environ. Microbiol. 57: 2555-2561Google Scholar
  244. Van Boven A, Tan PST & Konings WN (1988) Purification and characterization of a dipeptidase from Streptococcus cremoris Wg2. Appl. Environ. Microbiol. 54: 43-49Google Scholar
  245. Vanderslice P, Copeland WC & Robertus JD (1986) Cloning and nucleotide sequence of wild type and a mutant histidine decarboxylase from Lactobacillus 30a. J. Biol. Chem. 261: 15186-15191Google Scholar
  246. Vangtal A & Hammond EG (1986) Correlation of the flavor characteristics of Swiss-type cheeses with chemical parameters. J. Dairy Sci. 69: 2982-2993Google Scholar
  247. Varmanen P, Rantanen T & Palva A (1996a) An operon from Lactobacillus helveticus composed of a proline iminopeptidase gene (pepI) and two genes coding for putative members of the ABC transporter family of proteins. Microbiol. 142: 3459-3468Google Scholar
  248. Varmanen P, Rantanen T, Palva A & Tynkkynen S (1998) Cloning and characterization of a prolinase gene (pepR) from Lactobacillus rhamnosus. Appl. Environ. Microbiol. 64: 1831-1836Google Scholar
  249. Varmanen P, Steele J & Palva A (1996b) Characterization of a prolinase gene and its product and an adjacent ABC transporter gene from Lactobacillus helveticus. Microbiol. 142: 809-816Google Scholar
  250. Varmanen P, Vesanto E, Steele JL & Palva A (1994) Characterization and expression of the pepN gene encoding a general aminopeptidase from Lactobacillus helveticus. FEMS Microbiol. Lett. 124: 315-320Google Scholar
  251. Vesanto E, Peltoniemi K, Purtsi T, Steele JL & Palva A (1996) Molecular characterization, over-expression and purification of a novel dipeptidase from Lactobacillus helveticus. Appl. Microbiol. Biotech. 45: 638-645Google Scholar
  252. Vesanto E, Savijoki K, Rantanen T, Steele JL & Palva A (1995) An X-prolyl dipeptidyl aminopeptidase (pepX) gene from Lactobacillus helveticus. Microbiol. 141: 3067-3075Google Scholar
  253. Vesanto E, Varmanen P, Steele JL & Palva A (1994) Characterization and expression of the Lactobacillus helveticus pepC gene encoding a general aminopeptidase. Eur. J. Biochem. 224: 991-997Google Scholar
  254. Voight MN & Eitenmiller RR (1978) Role of histidine and tyrosine decarboxylases and mono-and diamine oxidases in amine buildup in cheese. J. Food Prot. 41: 182-186Google Scholar
  255. Vongerichten KF, Klein JR, Matern H & Plapp R (1994) Cloning and nucleotide sequence analysis of pepV, a carnosinase gene from Lactobacillus delbrueckii subsp. lactis DSM 7290, and partial characterization of the enzyme. Microbiol. 140: 2591-2600Google Scholar
  256. Wijesundera KM & Urbach G (1993) Flavor of Cheddar cheese. Final report to the Dairy Research and Development Corporation, Project CSt66Google Scholar
  257. Wilkins DW, Schmidt RH & Kennedy LB (1986) Threonine aldolase activity in yogurt bacteria as determined by headspace gas chromatography. J. Agric. Food Chem. 34: 150-152Google Scholar
  258. Wohlrab Y & Bockelmann W (1992) Purification and characterization of a dipeptidase from Lactobacillus delbrueckii subsp. bulgaricus. Int. Dairy. J. 2: 345-361Google Scholar
  259. Wohlrab Y & Bockelmann W (1993) Purification and characterization of a second aminopeptidase (PepC-like) from Lactobacillus delbrueckii subsp. bulgaricus B14. Int. Dairy. J. 3: 685-701Google Scholar
  260. Wohlrab Y & Bockelmann W (1994) Purification and characterization of a new aminopeptidase from Lactobacillus delbrueckii subsp. bulgaricus B14. Int. Dairy. J. 4: 409-427Google Scholar
  261. Yan TR, Azuma N, Kaminogawa S & Yamauchi K (1987a) Purification and characterization of a novel metalloendopeptidase from Streptococcus cremoris H61: A metalloendopeptidase that recognizes the size of its substrate. Eur. J. Biochem. 163: 259-266Google Scholar
  262. Yan TR, Azuma N, Kaminogawa S & Yamauchi K (1987b) Purification and characterization of a substrate-size-recognizing metalloendopeptidase from Streptococcus cremoris H61. Appl. Environ. Microbiol. 53: 2296-2302Google Scholar
  263. Yan TR, Lin MZ, Lin MJ & Sun BJ (1991) Purification and characterization of an X-prolyl-dipeptidyl aminopeptidase from Streptococcus cremoris nTR. J. Chin. Biochem. Soc. 20: 21-32Google Scholar
  264. Yang TS & Min DB (1993) Dynamic headspace analysis of volatile compounds of Cheddar and Swiss cheeses during ripening. In: Charalambous (ED) Food Flavors, Ingredients and Composition, (pp 157-174), Elsevier Science Publishers BV, AmsterdamGoogle Scholar
  265. Yen C, Green L & Miller CG (1980a) Degradation of intracellular protein in Salmonella typhimurium peptidase mutants. J. Mol. Biol. 143: 21-33Google Scholar
  266. Yen C, Green L & Miller CG (1980b) Peptide accumulation during growth of peptidase deficient mutants. J. Mol. Biol. 143: 35-48Google Scholar
  267. Yokoyama MT & Carlson JR (1981) Production of skatole and para-cresol by a rumen Lactobacillus sp. Appl. Environ. Microbiol. 41: 71-76Google Scholar
  268. Yoshpe-Besançon I, Gripon J-C & Ribadeau-Dumas B (1994) Xaa-Pro-dipeptidyl-aminopeptidase from Lactococcus lactis catalyses kinetically controlled synthesis of peptide bonds involving proline. Biotech. Appl. Biochem. 20: 131-140Google Scholar
  269. Yüksel GÜ & Steele JL (1996) DNA sequence analysis, expression, distribution, and physiological role of the Xaa-prolyldipeptidyl aminopeptidase gene from Lactobacillus helveticus CNRZ32. Appl. Microbiol. Biotech. 44: 766-773Google Scholar
  270. Yüksel GÜ & Steele JL (1997a) Direct sequence submission to GenBank for a prolidase (pepQ) from Lactobacillus helveticus CNRZ32 (Accession AF012084). UnpublishedGoogle Scholar
  271. Yüksel GÜ & Steele JL (1997b) Direct sequence submission to GenBank for pepV from Lactobacillus helveticus CNRZ32 (Accession AF012085). UnpublishedGoogle Scholar
  272. Yüksel GÜ & Steele JL (1999) Proline-specific peptidases of Lactobacillus helveticus CNRZ32: Cloning and DNA sequence analysis of pepQ, a prolidase gene, and characterization of peptidase-deficient mutants. Unpublished resultsGoogle Scholar
  273. Yvon M, Thirouin S, Rijnen L, Fromentier D & Gripon JC (1997) An aminotransferase from Lactococcus lactis initiates conversion of amino acids to cheese flavor compounds. Appl. Environ. Microbiol. 63: 414-419Google Scholar
  274. Zevaco C, Monnet V & Gripon JC (1990) Intracellular X-prolyl dipeptidyl peptidase from Lactococcus lactis ssp. lactis: Purification and properties. J. Appl. Bacteriol. 68: 357-366Google Scholar
  275. Zoon P & Allersma D (1996) Eye and crack formation in cheese by carbon dioxide from decarboxylation of glutamic acid. Neth. Milk Dairy J. 50: 309-318Google Scholar
  276. Zúñiga M, Champomier-Verges M, Zagorec M & Pérez-Martínez G (1998) Structural and functional analysis of the gene cluster encoding the enzymes of the arginine deiminase pathway of Lactobacillus sake. J. Bacteriol. 180: 4154-4159Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Jeffrey E. Christensen
    • 2
  • Edward G. Dudley
    • 2
  • Jeffrey A. Pederson
    • 1
  • James L. Steele
    • 1
  1. 1.Department of Food ScienceUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of BacteriologyUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations