Skip to main content
Log in

Peptidases and amino acid catabolism in lactic acid bacteria

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The conversion of peptides to free amino acids and their subsequent utilization is a central metabolic activity in prokaryotes. At least 16 peptidases from lactic acid bacteria (LAB) have been characterized biochemically and/or genetically. Among LAB, the peptidase systems of Lactobacillus helveticus and Lactococcus lactis have been examined in greatest detail. While there are homologous enzymes common to both systems, significant differences exist in the peptidase complement of these organisms. The characterization of single and multiple peptidase mutants indicate that these strains generally exhibit reduced specific growth rates in milk compared to the parental strains. LAB can also catabolize amino acids produced by peptide hydrolysis. While the catabolism of amino acids such as Arg, Thr, and His is well understood, few other amino acid catabolic pathways from lactic acid bacteria have been characterized in significant detail. Increasing research attention is being directed toward elucidating these pathways as well as characterizing their physiological and industrial significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abe K, Hayashi H & Maloney PC (1996) Exchange of aspartate and alanine. Mechanism for development of a proton-motive force in bacteria. J. Biol. Chem. 271: 3079-3084

    Google Scholar 

  • Ailing AC & Engels WJM (1996) Conversion of methionine by enzymes from Lactococcus lactis subsp. cremoris B78 during cheese ripening, poster K3, Federation of European Microbiological Societies Fifth Symposium on Lactic Acid Bacteria, 8-12 September, Veldhoven, The Netherlands

  • Arnau J, Jorgensen F, Madsen SM, Vrang A & Israelsen H (1998) Cloning of the Lactococcus lactis adhE gene, encoding a multifunctional alcohol dehydrogenase, by complementation of a fermentative mutant of Escherichia coli. J. Bacteriol. 180: 3049-3055

    Google Scholar 

  • Arora G & Lee BH (1992) Purification and characterization of aminopeptidase from Lactobacillus casei ssp. casei LLG. J. Dairy Sci. 75: 700-710

    Google Scholar 

  • Arora G & Lee BH (1994) Purification and characterization of an aminopeptidase from Lactobacillus casei subsp. rhamnosus S93. Biotech. Appl. Biochem. 19: 179-192

    Google Scholar 

  • Atlan D, Gilbert C, Blanc B & Portalier R (1994) Cloning, sequencing and characterization of the pepIP gene encoding a proline iminopeptidase from Lactobacillus delbrueckii subsp. bulgaricus CNRZ 397. Microbiol. 140: 527-535

    Google Scholar 

  • Atlan D, Laloi P & Portalier R (1990) X-Prolyldipeptidyl aminopeptidase of Lactobacillus delbrueckii ssp. bulgaricus: Characterization of the enzyme and isolation of deficient mutants. Appl. Environ. Microbiol. 56: 2174-2179

    Google Scholar 

  • Atiles MW, Dudley EG & Steele JL (1999) Characterization and inactivation of the branched-chain aminotransferase gene from Lactococcus lactis LM0230. Manuscript in preparation

  • Axelsson L (1998) Lactic acid bacteria: classification and physiology. In: Salminen S & von Wright A (Eds) Lactic acid bacteria. Microbiology and functional aspects, (pp 1-72). Marcel Dekker, Inc., New York

    Google Scholar 

  • Baankreis R & Exterkate FA (1991) Characterisation of a peptidase from Lactococcus lactis ssp. cremoris HP that hydrolyses di-and tripeptides containing proline or hydrophobic residues as the amino-terminal amino acid. Syst. Appl. Microbiol. 14: 317-323

    Google Scholar 

  • Baankreis R, Vanschalkwijk S, Ailing AC & Exterkate FA (1995) The occurrence of two intracellular oligoendopeptidases in Lactococcus lactis and their significance for peptide conversion in cheese. Appl. Microbiol. Biotech. 44: 386-392

    Google Scholar 

  • Bacon CL, Jennings PV, Fhaolain IN & O'Cuinn G (1994) Purification and characterisation of an aminopeptidase A from cytoplasm of Lactococcus lactis subsp. cremoris AM2. Int. Dairy. J. 4: 503-519

    Google Scholar 

  • Bacon CL, Wilkinson M, Jennings PV, Fhaolain IN & O'Cuinn G (1993) Purification and characterization of an aminotripeptidase from cytoplasm of Lactococcus lactis subsp. cremoris AM2. Int. Dairy. J. 3: 163-177

    Google Scholar 

  • Bernard N, Johnsen K, Ferain T, Garmyn D, Hols P, Holbrook JJ & Delcour J (1994) NAD+-dependent D-2-hydroxyisocaproate dehydrogenase of Lactobacillus delbrueckii subsp. bulgaricus. Gene cloning and enzyme characterization. Eur. J. Biochem. 224: 439-446

    Google Scholar 

  • Biede SL, Paulsen PV, Hammond EG & Glatz BA (1979) The flavor of Swiss cheese. In: Underkofler LA (Ed) Development in Industrial Microbiology, (pp 203-210). Society for Industrial Microbiology, Arlington, VA

    Google Scholar 

  • Blanc B, Laloi P, Atlan D, Gilbet C & Portalier R (1993) Two cell-wall-associated aminopeptidases from Lactobacillus helveticus and the purification and characterization of APII from strain ITGL1. J. Gen. Microbiol. 139: 1441-1448

    Google Scholar 

  • Bockelmann W, Beuck HP, Lick S & Heller K (1995) Purification and characterization of a new tripeptidase from Lactobacillus delbrueckii ssp. bulgaricus B14. Int. Dairy. J. 5: 493-502

    Google Scholar 

  • Bockelmann W, Fobker M & Teuber M (1991) Purification and characterization of the X-prolyl-dipeptidyl-aminopeptidase from Lactobacillus delbrückii subsp. bulgaricus and Lactobacillus acidophilus. Int. Dairy. J. 1: 51-66

    Google Scholar 

  • Bockelmann W, Gollan V & Heller KJ (1997) Purification of a second tripeptidase from Lactobacillus delbrueckii subsp. bulgaricus B14. Milchwissenschaft 52: 500-503

    Google Scholar 

  • Bockelmann W, Hoppeseyler T & Heller KJ (1996) Purification and characterization of an endopeptidase from Lactobacillus delbrueckii subsp. bulgaricus B14. Int. Dairy. J. 6: 1167-1180

    Google Scholar 

  • Bockelmann W, Shulz Y & Teuber M (1992) Purification and characterization of an aminopeptidase from Lactobacillus delbrückii subsp. bulgaricus. Int. Dairy. J. 2: 95-107

    Google Scholar 

  • Boeker EA & Snell EE (1972) Amino acid decarboxylases. In PD Boyer (Ed.) The Enzymes. 6: 217-253

  • Booth M, Donnelly WJ, Fhaoláin IN, Jennings PV & O'Cuinn G (1990a) Proline-specific peptidases of Streptococcus cremoris AM2. J. Dairy Res. 57: 79-88

    Google Scholar 

  • Booth M, Fhaoláin IN, Jennings PV & O'Cuinn G (1990b) Purification and characterization of a post-proline dipeptidyl aminopeptidase from Streptococcus cremoris AM2. J. Dairy Res. 57: 89-100

    Google Scholar 

  • Booth M, Jennings V, Ni Fhaoláin I & O'Cuinn G (1990c) Prolidase activity of Lactococcus lactis ssp. cremoris AM2: Partial purification and characterization. J. Dairy Res. 57: 245-254

    Google Scholar 

  • Bosman BW, Tan PST & Konings WN (1990) Purification and characterization of a tripeptidase from Lactococcus lactis ssp. cremoris Wg2. Appl. Environ. Microbiol. 56: 1839-1843

    Google Scholar 

  • Bosset JO, Collomb M & Sieber R (1993) The aroma composition of Swiss Gruyère cheese IV. The acidic volatile components and their changes in content during ripening. Lebensm. Wissen. Technol. 26: 581-592

    Google Scholar 

  • Braun SD & Olson NF (1986) Microencapsulation of cell-free extracts to demonstrate the feasibility of heterogeneous enzyme systems and cofactor recycling for development of flavor in cheese. J. Dairy Sci. 69: 1202-1208

    Google Scholar 

  • Brennand CP, Ha JK & Lindsay RC (1989) Aroma properties and thresholds of some branched-chain and other minor volatile fatty acids occurring in milkfat and meat lipids. J. Sensory Studies 4: 105-120

    Google Scholar 

  • Brückner R (1998) Direct sequence submission to GenBank for gltA (glucose uptake protein) from Staphylococcus xylosus (Accession Y14043). Unpublished

  • Chang GW & Snell EE (1968) Histidine decarboxylase of Lactobacillus 30a. II. Purification, substrate specificity, and stereospecificity. Biochemistry 7: 2005-2012

    Google Scholar 

  • Chapot-Chartier MP, Nardi M, Chopin MC, Chopin A & Gripon JC (1993) Cloning and sequencing of pepC, a cysteine aminopeptidase gene from Lactococcus lactis ssp. cremoris AM2. Appl. Environ. Microbiol. 59: 330-333

    Google Scholar 

  • Chapot-Chartier MP, Rul F, Nardi M & Gripon JC (1994) Gene cloning and characterization of PepC, a cysteine aminopeptidase from Streptococcus thermophilus, with sequence similarity to the eukaryotic bleomycin hydrolase. Eur. J. Biochem. 224: 497-506

    Google Scholar 

  • Chen YS & Steele JL (1998) Genetic characterization and physiological role of endopeptidase O from Lactobacillus helveticus CNRZ32. Appl. Environ. Microbiol. 64: 3411-3415

    Google Scholar 

  • Chich J-F, Rigolet P, Nardi M, Gripon J-C, Ribadeau-Dumas B & Brunie S (1995) Purification, crystallization, and preliminary X-ray analysis of PepX, an X-Prolyl dipeptidyl aminopeptidase from Lactococcus lactis. Prot. Struct. Funct. Genet. 23: 278-281

    Google Scholar 

  • Chopin A (1993) Organization and regulation of genes for amino acid biosynthesis in lactic acid bacteria. FEMS Microbiol. Rev. 12: 21-38

    Google Scholar 

  • Christensen JE, Lin DL, Palva A & Steele JL (1995) Sequence analysis, distribution and expression of an aminopeptidase N-encoding gene from Lactobacillus helveticus CNRZ32. Gene 155: 89-93

    Google Scholar 

  • Christensen JE & Steele JL (1996) Characterization of peptidase-deficient Lactobacillus helveticus CNRZ32 derivatives. Fifth Symposium on Lactic Acid Bacteria, Veldhoven, The Netherlands

  • Christensen JE & Steele JL (1998a) Hydrolysis of casein derived peptides by peptidase-deficient Lactobacillus helveticus CNRZ32 derivatives. Joint Meeting of the American Dairy Science Association and the American Society of Animal Science. Journal of Dairy Science, Denver, Colorado, USA.

  • Christensen JE & Steele JL (1998b) Unpublished results

  • Collins MD, Rodrigues U, Ash C, Aguirre M, Farrow JAE, Martinez-Murcia A, Phillips BA, Williams AM & Wallbanks S (1991) Phylogenetic analysis of the genus Lactobacillus and related lactic acid bacteria as determined by reverse transcriptase sequencing of 16S rRNA. FEMS Microbiol. Lett. 77: 5-12

    Google Scholar 

  • Copeland WC, Domena JD & Robertus JD (1989) The molecular cloning, sequence and expression of the hdcB gene from Lactobacillus 30A. Gene 85: 259-265

    Google Scholar 

  • Crow VL & Thomas TD (1982) Arginine metabolism in lactic streptococci. J. Bacteriol. 150: 1024-1032

    Google Scholar 

  • Cunin R, Glansdorff N, Piérard A & Stalon V (1986) Biosynthesis and metabolism of arginine in bacteria. Microbiol. Rev. 50: 314-352

    Google Scholar 

  • de Mendoza D, Grau R & Cronan JE Jr (1993) Biosynthesis and function of membrane lipids. In: Sonenshein AL, Hock JA & Losick R (Eds) Bacillus subtilis and other gram-positive bacteria: biochemistry, physiology, and molecular genetics, (pp 411-421). American Society for Microbiology, Washington, DC

    Google Scholar 

  • Desmazeaud MJ & Zevaco C (1976) General properties and substrate specificity of an intracellular neutral protease from Streptococcus diacetilactis. Ann. Biol. Anim. Biochim. Biophys. 16: 851-868

    Google Scholar 

  • Desmazeaud MJ & Zevaco C (1977) General properties and substrate specificity of an intracellular soluble dipeptidase from Streptococcus diacetilactis. Ann. Biol. Anim. Biochim. Biophys. 17: 723-736

    Google Scholar 

  • Desmazeaud MJ & Zevaco C (1979) Isolation and general properties of two intracellular amino peptidases of Streptococcus diacetylactis. Milchwissenschaft 34: 606-610

    Google Scholar 

  • Detmers FJM, Kunji ERS, Lanfermeijer FC, Poolman B & Konings WN (1998) Kinetics and specificity of peptide uptake by the oligopeptide transport system of Lactococcus lactis. Biochem. 37: 16671-16679

    Google Scholar 

  • Doeglas HM, Huisman J & Nater JP (1967) Histamine intoxication after cheese. Lancet 2: 1361-1372

    Google Scholar 

  • Dudley EG, Husgen AC, He W & Steele JL (1996) Sequencing, distribution, and inactivation of the dipeptidase A gene (pepDA) from Lactobacillus helveticus CNRZ32. J. Bacteriol. 178: 701-704

    Google Scholar 

  • Dudley EG & Steele JL (1994) Nucleotide sequence and distribution of the pepPN gene from Lactobacillus helveticus CNRZ32. FEMS Microbiol. Lett. 119: 41-45

    Google Scholar 

  • Dudley EG & Steele JL (1999) Characterization and inactivation of the aspartate aminotransferase gene from Lactococcus lactis LM0230. Manuscript in preparation

  • Dunn HC & Lindsay RC (1985) Evaluation of the role of microbial Strecker-derived aroma compounds in unclean-type flavors of Cheddar cheese. J. Dairy Sci. 68: 2859-2874

    Google Scholar 

  • Eggimann B & Bachmann M (1980) Purification and partial characterization of an aminopeptidase from Lactobacillus lactis. Appl. Environ. Microbiol. 40: 876-882

    Google Scholar 

  • Exterkate FA, De Jong M, De Veer GJCM & Baankreis R (1992) Location and characterization of aminopeptidase N in Lactococcus lactis ssp. cremoris HP. Appl. Microbiol. Biotech. 37: 46-54

    Google Scholar 

  • Exterkate FA & De Veer GJCM (1987) Purification and some properties of a membrane-bound aminopeptidase A from Streptococcus cremoris. Appl. Environ. Microbiol. 53: 577-583

    Google Scholar 

  • Feil IK, Hendle J & Schomburg D (1997) Modified substrate specificity of L-hydroxyisocaproate dehydrogenase derived from structure-based protein engineering. Protein Eng 10: 255-262

    Google Scholar 

  • Feil IK, Lerch HP & Schomburg D (1994) Deletion variants of L-hydroxyisocaproate dehydrogenase. Probing substrate specificity. Eur. J. Biochem. 223: 857-863

    Google Scholar 

  • Fenster KM, Parkin KL & Steele JL (1997) Characterization of a thiol-dependent endopeptidase from Lactobacillus helveticus CNRZ32. J. Bacteriol. 179: 2529-2533

    Google Scholar 

  • Fernández de Palencia P, López de Felipe F, Requena T & Peláez C (1999) The aminopeptidase C (PepC) from Lactobacillus helveticus CNRZ32. A comparative study of PepC from dairy lactic acid bacteria. Submitted

  • Fernández de Palencia P, Pelaez C & Martín-Hernández MC (1997) Characterization of the aminopeptidase system from Lactobacillus casei subsp. casei IFPL 731. J. Agric. Food Chem. 45: 3778-3781

    Google Scholar 

  • Fernández L, Bhowmik T & Steele JL (1994) Characterization of the Lactobacillus helveticus CNRZ32 pepC gene. Appl. Environ. Microbiol. 60: 333-336

    Google Scholar 

  • Fernández-Esplá MD & Martín-Hernández MC (1997) Purification and characterization of a dipeptidase from Lactobacillus casei ssp. casei IFPL 731 isolated from goat cheese made from raw milk. J. Dairy Sci. 80: 1497-1504

    Google Scholar 

  • Fernández-Esplá MD, Martín-Hernández MC & Fox PF (1997) Purification and characterization of a prolidase from Lactobacillus casei subsp. casei IFPL 731. Appl. Environ. Microbiol. 63: 314-316

    Google Scholar 

  • Gao S, Mooberry ES & Steele JL (1998) Use of 13C nuclear magnetic resonance and gas chromatography to examine methionine catabolism by lactococci. Appl. Environ. Microbiol. 64: 4670-4675

    Google Scholar 

  • Gao S, Oh DH, Broadbent JR, Johnson ME, Weimer BC & Steele JL (1997) Aromatic amino acid catabolism by lactococci. Lait 77: 371-381

    Google Scholar 

  • Gao S & Steele JL (1998) Purification and characterization of oligomeric species of an aromatic amino acid aminotransferase from Lactococcus lactis subsp. lactis S3. J. Food Biochem. 22: 197-211

    Google Scholar 

  • Geis A, Bockelmann W & Teuber M (1985) Simultaneous extraction and purification of a cell wall-associated peptidase and beta-casein specific protease from Streptococcus cremoris AC1. Appl. Microbiol. Biotech. 23: 79-84

    Google Scholar 

  • Gilbert C, Atlan D, Blanc B & Portalier R (1994) Proline iminopeptidase from Lactobacillus delbrueckii subsp. bulgaricus CNRZ 397: Purification and characterization. Microbiol. 140: 537-542

    Google Scholar 

  • Gobbetti M, Smacchi E & Corsetti A (1996) The proteolytic system of Lactobacillus sanfrancisco CB1: Purification and characterization of a proteinase, a dipeptidase, and an aminopeptidase. Appl. Environ. Microbiol. 62: 3220-3226

    Google Scholar 

  • Gottesman S & Maurizi MR (1992) Regulation by proteolysis: energy-dependent proteases and their targets. Microbiol Rev 56: 592-621

    Google Scholar 

  • Griffith R & Hammond EG (1989) Generation of Swiss cheese flavor components by the reaction of amino acids with carbonyl compounds. J. Dairy Sci. 72: 604-613

    Google Scholar 

  • Guirard BM & Snell EE (1964) Nutritional requirements of Lactobacillus 30a for growth and histidine decarboxylase production. J. Bacteriol. 87: 370-376

    Google Scholar 

  • Gummalla S (1998) Tryptophan catabolism by Lactobacillus spp.: Biochemistry and implications on flavor development in reduced-fat cheddar cheese. Master of Science thesis, Utah State University

  • Gummalla S & Broadbent JR (1996) Indole production by Lactobacillus ssp. in cheese: a possible role for tryptophanase. J. Dairy Sci. 79(Suppl. 1): 101

    Google Scholar 

  • Guthrie BD (1993) Influence of cheese-related microflora on the production of unclean-flavored aromatic amino acid metabolites in Cheddar cheese. Ph.D thesis, University of Wisconsin-Madison

  • Ha KJ & Lindsay RC (1991a) Contributions of cow, sheep, and goat milks to characterizing branched-chain fatty acid and phenolic flavors in varietal cheeses. J. Dairy Sci. 74: 3267-3274

    Google Scholar 

  • Ha KJ & Lindsay RC (1991b) Volatile branched-chain fatty acids and phenolic compounds in aged Italian cheese flavors. J. Food Sci. 56: 1241-1247, 1250

    Google Scholar 

  • Habibi-Najafi MB & Lee BH (1994) Purification and characterization of X-prolyl dipeptidyl peptidase from Lactobacillus casei subsp. casei LLG. Appl. Microbiol. Biotech. 42: 280-286

    Google Scholar 

  • Hackert ML, Meador WE, Oliver RM, Salmon JB, Recsei PA & Snell EE (1981) Crystallization and subunit structure of histidine decarboxylase from Lactobacillus 30a. J. Biol. Chem. 256: 687-690

    Google Scholar 

  • Harrison GA, Khairallah EA & Morgan ME (1969) Alcohol dehydrogenase in Streptococcus lactis var. maltigenes: In vivo relationship to glycolysis, in vitro kinetics, poster P109. American Society for Microbiology 69th Annual Meeting, 4-9 May, Miami Beach, Fla

  • Hellendoorn MA, Franke-Fayard BMD, Mierau I, Venema G & Kok J (1997) Cloning and analysis of the pepV dipeptidase gene of Lactococcus lactis MG1363. J. Bacteriol. 179: 3410-3415

    Google Scholar 

  • Hickey MW, Hillier AJ & Jago GR (1983) Enzymic activities associated with lactobacilli in dairy products. Aust. J. Dairy Technol. 38: 154-157

    Google Scholar 

  • Higuchi T, Hayashi H & Abe K (1997) Exchange of glutamate and γ-aminobutyrate in a Lactobacillus strain. J. Bacteriol. 179: 3362-3364

    Google Scholar 

  • Hoffman K, Bucher P, Falquet L & Bairoch A (1999) The PROSITE database, its status in 1999. Nuc. Acids Res. 27: 215-219

    Google Scholar 

  • Honeyfield DC & Carlson JR (1990) Assay for the enzymatic conversion of indoleacetic acid to 3-methylindole in a ruminal Lactobacillus species. Appl. Environ. Microbiol. 56: 724-729

    Google Scholar 

  • Houbart V, Ribadeau-Dumas B & Chich JF (1995) Synthesis of enterostatin-amide by the Xaa-prolyl dipeptidyl aminopeptidase from Lactococcus lactis subsp. lactis NCDO 763. Biotech. Appl. Biochem. 21: 149-159

    Google Scholar 

  • Hummel W & Kula MR (1989) Dehydrogenases for the synthesis of chiral compounds. Eur. J. Biochem. 184: 1-13

    Google Scholar 

  • Hummel W, Schmidt E, Wandrey C & Kula MR (1986) L-phenylalanine dehydrogenase from Brevibacterium sp. for the production of L-phenylalaine by reductive amination of phenylpyruvate. Appl. Microbiol. Biotechnol. 25: 175-185

    Google Scholar 

  • Hummel W, Schütte H & Kula M-R (1985) D-2-hydroxyisocaproate dehydrogenase from Lactobacillus casei. Appl. Microbiol. Biotechnol. 21: 7-15

    Google Scholar 

  • Hummel W, Schütte H & Kula M-R (1988) D-(-)-mandelic acid dehydrogenase from Lactobacillus curvatus. Appl. Microbiol. Biotechnol. 28: 433-439

    Google Scholar 

  • Hummel W, Weiss N & Kula MR (1984) Isolation and characterization of a bacterium possessing L-phenylalanine dehydrogenase activity. Arch. Microbiol. 137: 47-52

    Google Scholar 

  • Huynh QK, Recsei PA, Vaaler GL & Snell EE (1984) Histidine decarboxylase of Lactobacillus 30a. Sequences of the overlapping peptides, the complete alpha chain, and prohistidine decarboxylase. J. Biol. Chem. 259: 2833-2839

    Google Scholar 

  • Hwang IK, Kaminogawa S & Yamauchi K (1981) Purification and properties of a dipeptidase from Streptococcus cremoris. Agric. Biol. Chem. 45: 159-166

    Google Scholar 

  • Jackson HW & Morgan ME (1954) Identity and origin of the malty aroma substance from milk cultures of Streptococcus lactis var. maltigenes. J. Dairy Sci. 37: 1316-1324

    Google Scholar 

  • Joosten HM & Northolt MD (1989) Detection, growth, and amine-producing capacity of lactobacilli in cheese. Appl. Environ. Microbiol. 55: 2356-2359

    Google Scholar 

  • Joosten HM & Stadhouders J (1987) Conditions allowing the formation of biogenic amines in cheese. 1. Decarboxylative properties of starter bacteria. Neth. Milk Dairy J. 41: 247-258

    Google Scholar 

  • Joshua-Tor L, Xu HE, Johnston SA & Rees DC (1995) Crystal structure of a conserved protease that binds DNA: the bleomycin hydrolase, Gal6. Science 269: 945-950

    Google Scholar 

  • Kahana LM & Todd E (1981) Histamine poisoning and reaction to cheese. Ann. Intern. Med. 88: 520-521

    Google Scholar 

  • Kallwass HKW (1992) Potential of R-2-hydroxyisocaproate dehydrogenase from Lactobacillus casei for stereospecific reductions. Enzyme Microb. Technol. 14: 28-35

    Google Scholar 

  • Kaminogawa S, Azuma N, Hwang IK, Suzuki Y & Yamauchi K (1984) Isolation and characterization of a prolidase from Streptococcus cremoris H61. Agric. Biol. Chem. 48: 3035-3040

    Google Scholar 

  • Khalid NM & Marth EH (1990a) Partial purification and characterization of an aminopeptidase from Lactobacillus helveticus CNRZ 32. Syst. Appl. Microbiol. 13: 311-319

    Google Scholar 

  • Khalid NM & Marth EH (1990b) Purification and partial characterization of a prolyl-dipeptidyl aminopeptidase from Lactobacillus helveticus CNRZ 32. Appl. Environ. Microbiol. 56: 381-388

    Google Scholar 

  • Kiefer-Partsch B, Bockelmann W, Geis A & Teuber M (1989) Purification of an X-prolyldipeptidyl aminopeptidase from the cell wall proteolytic system of Lactococcus lactis ssp. cremoris. Appl. Microbiol. Biotech. 31: 75-78

    Google Scholar 

  • Kingsley R, Rabsch W, Roberts M, Reissbrodt R & Williams PH (1996) TonB-dependent iron supply in Salmonella by α-ketoacids and α-hydroxyacids. FEMS Microbiol. Lett. 140: 65-70

    Google Scholar 

  • Klein JR, Dick A, Schick J, Matern HT, Henrich B & Plapp R (1995) Molecular cloning and DNA sequence analysis of pepL, a leucyl aminopeptidase gene from Lactobacillus delbrueckii subsp. lactis DSM7290. Eur. J. Biochem. 228: 570-578

    Google Scholar 

  • Klein JR, Henrich B & Plapp R (1994a) Cloning and nucleotide sequence analysis of the Lactobacillus delbrueckii ssp. lactis DSM7290 cysteine aminopeptidase gene pepC. FEMS Microbiol. Lett. 124: 291-299

    Google Scholar 

  • Klein JR, Klein U, Schad M & Plapp R (1993) Cloning, DNA sequence analysis and partial characterization of pepN, a lysyl aminopeptidase from Lactobacillus delbrueckii ssp. lactis DSM7290. Eur. J. Biochem. 217: 105-114

    Google Scholar 

  • Klein JR, Schick J, Henrich B & Plapp R (1997) Lactobacillus delbrueckii subsp. lactis DSM7290 pepG gene encodes a novel cysteine aminopeptidase. Microbiol. 143: 527-537

    Google Scholar 

  • Klein JR, Schmidt U & Plapp R (1994b) Cloning, heterologous expression, and sequencing of a novel proline iminopeptidase gene, pepI, from Lactobacillus delbrueckii subsp. lactis DSM 7290. Microbiol. 140: 1133-1139

    Google Scholar 

  • Kochhar S, Hunziker PE, Leong-Morgenthaler P & Hottinger H (1992) Evolutionary relationship of NAD+-dependent D-lactate dehydrogenase: comparison of primary structure of 2-hydroxy acid dehydrogenases. Biochem. Biophys. Res. Comm. 184: 60-66

    Google Scholar 

  • Kong Y, Strickland M & Broadbent JR (1996) Tyrosine and phenylalanine catabolism by Lactobacillus casei flavor adjuncts: biochemistry and implications in cheese flavor. J. Dairy Sci. 79(Suppl. 1): 101

    Google Scholar 

  • Konings WN, Lolkema JS, Bolhuis H, van Veen HW, Poolman B & Driessen AJ (1997) The role of transport processes in survival of lactic acid bacteria. Energy transduction and multidrug resistance. Antonie Van Leeuwenhoek 71: 117-128

    Google Scholar 

  • Konings WN, Lolkema JS & Poolman B (1995) The generation of metabolic energy by solute transport. Arch. Microbiol. 164: 235-242

    Google Scholar 

  • Kunji ERS, Fang G, Jeronimus-Stratingh CM, Bruins AP, Poolman B & Konings WN (1998) Reconstruction of the proteolytic pathway for use of beta-casein by Lactococcus lactis. Mol. Microbiol. 27: 1107-1118

    Google Scholar 

  • Kunji ERS, Hagting A, De Vries CJ, Juillard V, Haandrikman AJ, Poolman B & Konings WN (1995) Transport of beta-casein derived peptides by the oligopeptide transport system is a crucial step in the proteolytic pathway of Lactococcus lactis. J. Biol. Chem. 270: 1569-1574

    Google Scholar 

  • Kunji ERS, Mierau I, Hagting A, Poolman B & Konings WN (1996) The proteolytic systems of lactic acid bacteria. Antonie van Leeuwenhoek 70: 187-221

    Google Scholar 

  • l'Anson KJA, Movahedi S, Griffin HG, Gasson MJ & Mulholland F (1995) A non-essential glutamyl aminopeptidase is required for optimal growth of Lactococcus lactis MG1363 in milk. Microbiol. 141: 2873-2881

    Google Scholar 

  • Lapujade P, Cocaign-Bousquet M & Loubiere P (1998) Glutamate biosynthesis in Lactococcus lactis subsp. lactis NCDO 2118. Appl. Environ. Microbiol. 64: 2485-2489

    Google Scholar 

  • Law BA (1981) The formation of aroma and flavor compounds in fermented dairy products. Dairy Sci. Abstr. 43: 143

    Google Scholar 

  • Law J & Haandrikman A (1997) Proteolytic enzymes of lactic acid bacteria. Int. Dairy. J. 7: 1-11

    Google Scholar 

  • Lees GJ & Jago GR (1976) Formation of acetaldehyde from threonine by lactic acid bacteria. J. Dairy Res. 43: 75-83

    Google Scholar 

  • Lerch H-P, Frank R & Collins J (1989) Cloning, sequencing and expression of the L-2-hydroxyisocaproate dehydrogenase-encoding gene of Lactobacillus confusus in Escherichia coli. Gene 83: 263-270

    Google Scholar 

  • Lian W, Wu D, Konings WN, Mierau I & Hersh LB (1996) Heterologous expression and characterization of recombinant Lactococcus lactis neutral endopeptidase (Neprilysin). Arch. Biochem. Biophys. 333: 121-126

    Google Scholar 

  • Liu S-Q & Pilone GJ (1998) A review: arginine metabolism in wine lactic acid bacteria and its practical significance. J. Appl. Microbiol. 84: 315-327

    Google Scholar 

  • Liu S-Q, Pritchard GG, Hardman MJ & Pilone GJ (1995) Occurance of arginine deiminase pathway enzymes in arginine catabolism by wine lactic acid bacteria. Appl. Environ. Microbiol. 61: 310-316

    Google Scholar 

  • Lloyd RJ & Pritchard GG (1991) Characterization of X-prolyldipeptidylaminopeptidase from Lactococcus lactis ssp. lactis. J. Gen. Microbiol. 137: 49-56

    Google Scholar 

  • Machuga EJ & Ives DH (1984) Isolation and characterization of an aminopeptidase (EC 3.4.11.1) from Lactobacillus acidophilus R-26. Biochim. Biophys. Acta 789: 26-36

    Google Scholar 

  • MacLeod P & Morgan ME (1958) Differences in the ability of lactic streptococci to form aldehydes from certain amino acids. J. Dairy Sci. 41: 908-913

    Google Scholar 

  • Magboul AAA & McSweeney PLH (1998) Purification and characterisation of an aminopeptidase from Lactobacillus curvatus DPC 2024. Aust. J. Dairy Tech. 53: 114

    Google Scholar 

  • Manca de Nadra MC, Pese de Ruiz Holgado AA & Oliver G (1982) Arginine dihydrolase activity in lactic acid bacteria. Milchwissenschaft 37: 669-670

    Google Scholar 

  • Manca De Nadra MC, Raya RR, Pesce De Ruiz Holgado A & Oliver G (1987) Isolation and properties of threonine aldolase of Lactobacillus bulgaricus YOP12. Milchwissenschaft 42: 92-94

    Google Scholar 

  • Marquis RE, Bender GR, Murray DR & Wong A (1987) Arginine deiminase system and bacterial adaptation to acid environments. Appl. Environ. Microbiol. 53: 198-200

    Google Scholar 

  • Marranzini RM, Schmidt RH, Shireman RB, Marshall MR & Cornell JA (1989) Effect of threonine and glycine concentrations on threonine aldolase activity of yogurt microorganisms during growth in a modified milk prepared by ultrafiltration. J. Dairy Sci. 72: 1142-1148

    Google Scholar 

  • Mars I & Monnet V (1995) An aminopeptidase P from Lactococcus lactis with original specificity. Biochim. Biophys. Acta 1243: 209-215

    Google Scholar 

  • Marshall VM & Cole WM (1983) Threonine aldolase and alcohol dehydrogenase activities in Lactobacillus bulgaricus and Lactobacillus acidophilus and their contribution to flavour production in fermented milks. J. Dairy Res. 50: 375-379

    Google Scholar 

  • Marugg JD, Meijer W, van Kranenburg R, Laverman P, Bruinenberg PG & de Vos WM (1995) Medium-dependent regulation of proteinase gene expression in Lactococcus lactis: control of transcription initiation by specific dipeptides. J. Bacteriol. 177: 2982-2989

    Google Scholar 

  • Massey LK, Sokatch JR & Conrad RS (1976) Branched-chain amino acid catabolism in bacteria. Bacteriol. Rev. 40: 42-54

    Google Scholar 

  • Masson F, Eclache L, Compte T, Talon R & Montel MC (1996) Screening of microbial strains producing amines and isolated from meat products. In Proceedings of 42nd International Congress of meat science and technology, pp 546-547, Sept. 1-6, Lillehammer, Norway

  • Mata L, Erra-Pujada M, Gripon J-C & Mistou M-Y (1997) Experimental evidence for the essential role of the C-terminal residue in the strict aminopeptidase activity of the thiol aminopeptidase PepC, a bacterial bleomycin hydrolase. Biochem. J. 328: 343-347

    Google Scholar 

  • Mathiopoulos C, Mueller JP, Slack FJ, Murphy CG, Patankar S, Bukusoglu G & Sonenshein AL (1991) A Bacillus subtilis dipeptide transport system expressed early during sporulation. Mol Microbiol 5: 1903-1913

    Google Scholar 

  • Matos J, Nardi M, Kumura H & Monnet V (1998) Genetic characterization of PepP, which encodes an aminopeptidase P whose deficiency does not affect Lactococcus lactis growth in milk, unlike deficiency of the X-Prolyl dipeptidyl aminopeptidase. Appl. Environ. Microbiol. 64: 4591-4595

    Google Scholar 

  • Mayo B, Kok J, Bockelmann W, Haandrikman A, Leenhouts KJ & Venema G (1993) Effect of X-prolyl dipeptidyl aminopeptidase deficiency on Lactococcus lactis. Appl. Environ. Microbiol. 59: 2049-2055

    Google Scholar 

  • Mayo B, Kok J, Venema K, Bockelmann W, Teuber M, Reinke H & Venema G (1991) Molecular cloning and sequence analysis of the X-prolyldipeptidyl aminopeptidase gene from Lactococcus lactis ssp. cremoris. Appl. Environ. Microbiol. 57: 38-44

    Google Scholar 

  • McCabe BJ (1986) Dietary tyramine and other pressor amines in MAOI regimens: A review. J. Amer. Diet. Assoc. 86: 1059-1064

    Google Scholar 

  • Meijer W, Marugg JD & Hugenholtz J (1996) Regulation of proteolytic enzyme activity in Lactococcus lactis. Appl. Environ. Microbiol. 62: 156-161

    Google Scholar 

  • Meyer J & Jordi R (1987) Purification and characterization of X-prolyldipeptidylaminopeptidase from Lactobacillus lactis and from Streptococcus thermophilus. J. Dairy Sci. 70: 738-745

    Google Scholar 

  • Meyer-Barton EC, Klein JR, Imam M & Plapp R (1993) Cloning and sequence analysis of the X-prolyl-dipeptidyl-aminopeptidase gene (pepX) from Lactobacillus delbrueckii ssp. lactis DSM7290. Appl. Microbiol. Biotech. 40: 82-89

    Google Scholar 

  • Midwinter RG & Pritchard GG (1994) Aminopeptidase N from Streptococcus salivarius subsp. thermophilus NCDO 573: Purification and properties. J. Appl. Bacteriol. 77: 288-295

    Google Scholar 

  • Mierau I, Haandrikman AJ, Velterop O, Tan PST, Leenhouts KL, Konings WN, Venema G & Kok J (1994) Tripeptidase gene (pepT) of Lactococcus lactis: Molecular cloning and nucleotide sequencing of pepT and construction of a chromosomal deletion mutant. J. Bacteriol. 176: 2854-2861

    Google Scholar 

  • Mierau I, Kunji ERS, Leenhouts KJ, Hellendoorn MA, Haandrikman AJ, Poolman B, Konings WN, Venema G & Kok J (1996a) Multiple-peptidase mutants of Lactococcus lactis are severely impaired in their ability to grow in milk. J. Bacteriol. 178: 2794-2803

    Google Scholar 

  • Mierau I, Kunji ERS, Venema G, Poolman B & Kok J (1996b) Peptidases and growth of Lactococcus lactis in milk. Lait 76: 25-32

    Google Scholar 

  • Mierau I, Tan PST, Haandrikman AJ, Mayo B, Kok J, Leenhouts KJ, Konings WN & Venema G (1993) Cloning and sequencing of the gene for a lactococcal endopeptidase, an enzyme with sequence similarity to mammalian enkephalinase. J. Bacteriol. 175: 2087-2096

    Google Scholar 

  • Miller A, Morgan ME & Libbey LM (1974) Lactobacillus maltaromicus, a new species producing a malty aroma. Int. J. System. Bacteriol. 24: 346-354

    Google Scholar 

  • Miller CG (1987) Protein degradation and proteolytic modification. Pages 680-691 in FC Neidhardt JLI, KB Low, B Magasanik, M Schaechter & HE Umbarger (Ed.) Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Miller CG & Green L (1981) Degradation of abnormal proteins in peptidase-deficient mutants of Salmonella typhimurium. J. Bacteriol. 147: 925-930

    Google Scholar 

  • Miller CG & Green L (1983) Degradation of proline peptides in peptidase-deficient strains of Salmonella typhimurium. J. Bacteriol. 153: 350-356

    Google Scholar 

  • Milo C & Reineccius GA (1997) Identification and quantification of potent odorants in regular-fat and low-fat mild Cheddar cheese. J. Agric. Food Chem. 45: 3590-3594

    Google Scholar 

  • Misono H, Goto N & Nagasaki S (1985) Purification, crystallization and properties of NADP+-specific glutamate dehydrogenase from Lactobacillus fermentum. Agric. Biol. Chem. 49: 117-123

    Google Scholar 

  • Mistou M-Y & Gripon J-C (1998) Catalytic properties of the cysteine aminopeptidase PepC, a bacterial bleomycin hydrolase. Biochim. Biophys. Acta 3: 63-70

    Google Scholar 

  • Mistou M-Y, Rigolet P, Chapot-Chartier MP, Nardi M, Gripon J-C & Brunie S (1994) Crystallization and preliminary X-ray analysis of PepC, a thiol aminopeptidase from Lactococcus lactis homologous to bleomycin hydrolase. J. Mol. Biol. 237: 160-162

    Google Scholar 

  • Miyakawa H, Hashimoto I, Nakamura T, Ishibashi N, Shimamura S & Igoshi K (1994) Purification and characterization of an X-prolyl dipeptidyl aminopeptidase from Lactobacillus helveticus LHE-511. Milchwissenschaft 49: 670-673

    Google Scholar 

  • Miyakawa H, Kobayashi S, Shimamura S & Tomita M (1991) Purification and characterization of an X-prolyldipeptidyl aminopeptidase from Lactobacillus delbrueckii ssp. bulgaricus LBU-147. J. Dairy Sci. 74: 2375-2381

    Google Scholar 

  • Miyakawa H, Kobayashi S, Shimamura S & Tomita M (1992) Purification and characterization of an aminopeptidase from Lactobacillus helveticus LHE-511. J. Dairy Sci. 75: 27-35

    Google Scholar 

  • Molenaar D, Bosscher JS, Ten Brink B, Driessen AJM & Konings WN (1993) Generation of a proton motive force by histidine decarboxylation and electrogenic histidine/histamine antiport in Lactobacillus buchneri. J. Bacteriol. 175: 2864-2870

    Google Scholar 

  • Monnet V, Nardi M, Chopin A, Chopin M-C & Gripon J-C (1994) Biochemical and genetic characterization of PepF, an oligopeptidase from Lactococcus lactis. J. Biol. Chem. 269: 32070-32076

    Google Scholar 

  • Montel MC, Seronie MP, Talon R & Hebraud M (1995) Purification and characterization of a dipeptidase from Lactobacillus sake. Appl. Environ. Microbiol. 61: 837-839

    Google Scholar 

  • Morel F, Frot-Coutaz J, Aubel D, Portalier R & Atlan D (1997) Direct sequence submission to GenBank for a prolidase from Lactobacillus debrueckii ssp. bulgaricus CNRZ397 (Accession 3821250). Unpublished

  • Morel F, Gilbert C, Geourjon C, Frot-Coutaz J, Portalier R & Atlan D (1999a) The prolyl aminopeptidase from Lactobacillus delbrueckii subsp. bulgaricus belongs to the alpha/beta hydrolase fold family. Biochim. Biophys. Acta-Protein Struct. Molec. Enzym. 1429: 501-505

    Google Scholar 

  • Morel F, Frot-Coutaz J, Aubel D, Portalier R & Atlan D (1999b) Characterization of a prolidase from Lactobacillus delbrueckii subsp. bulgaricus CNRZ 397 with an unusual regulation of biosynthesis. Microbiol. 145:437-446

    Google Scholar 

  • Morgan ME, Lindsay RC, Libbey LM & Pereira RL (1965) Identity of additional aroma constituents in milk cultures of Streptococcus lactis var. maltigenes. J. Dairy Sci. 49: 15-18

    Google Scholar 

  • Morishita T & Yajima M (1995) Incomplete operation of biosynthetic and bioenergetic functions of the citric acid cycle in multiple auxotrophic lactobacilli. Biosci. Biotech. Biochem. 59: 251-255

    Google Scholar 

  • Morita H, Yoshikawa H, Sakata R, Nagata Y & Tanaka H (1997) Synthesis of nitric oxide from the two equivatent guanidino nitrogens of L-arginine by Lactobacillus fermentum. J. Bacteriol. 179: 7812-7815

    Google Scholar 

  • Muset G, Monnet V & Gripon JC (1989) Intracellular proteinase of Lactococcus lactis ssp. lactis NCDO 763. J. Dairy Res. 56: 765-778

    Google Scholar 

  • Nakae T & Elliott JA (1965) Production of volatile fatty acids by some lactic acid bacteria. II. Selective formation of volatile fatty acids by degradation of amino acids. J. Dairy Sci. 48: 293-299

    Google Scholar 

  • Nardi M, Chopin MC, Chopin A, Cals MM & Gripon JC (1991) Cloning and DNA sequence analysis of an X-prolyldipeptidyl aminopeptidase gene from Lactococcus lactis ssp. lactis NCDO 763. Appl. Environ. Microbiol. 57: 45-50

    Google Scholar 

  • Nardi M, Renault P & Monnet V (1997) Duplication of the pepF gene and shuffling of DNA fragments on the lactose plasmid of Lactococcus lactis. J. Bacteriol. 179: 4164-4171

    Google Scholar 

  • Neviani E, Boquien CY, Monnet V, Thanh LP & Gripon JC (1989) Purification and characterization of an aminopeptidase from Lactococcus lactis ssp. cremoris AM2. Appl. Environ. Microbiol. 55: 2308-2314

    Google Scholar 

  • Nierop Groot MN & de Bont JAM (1998) Conversion of phenylalanine to benzaldehyde initialed by an aminotransferase in Lactobacillus plantarum. Appl. Environ. Microbiol. 64: 3009-3013

    Google Scholar 

  • Niven GW (1991) Purification and characterization of aminopeptidase A from Lactococcus lactis ssp. lactis NCDO 712. J. Gen. Microbiol. 137: 1207-1212

    Google Scholar 

  • Ohmiya K & Sato Y (1975) Purification and properties of intracellular proteinase from Streptococcus cremoris. Applied Microbiology 30: 738-745

    Google Scholar 

  • Parks EH, Ernst SR, Hamlin R, Xuong NH & Hackert ML (1985) Structure determination of histidine decarboxylase from Lactobacillus 30a al 3.0 A resolution. J. Mol. Biol. 182: 455-465

    Google Scholar 

  • Patton S (1964) Volatile acids of Swiss cheese. J. Dairy Sci. 47: 817-818

    Google Scholar 

  • Paulsen PV, Kowalewska J, Hammond EG & Glatz BA (1980) Role of micro flora in production of free fatty acids and flavor in Swiss cheese. J. Dairy Sci. 63: 912-918

    Google Scholar 

  • Paulus H (1993) Biosynthesis of the aspartate family of amino acids. In: Sonenshein AL, Hock JA & Losick R (Eds) Bacillus subtilis and other gram-positive bacteria: biochemistry, physiology, and molecular genetics, (pp 237-267). American Society for Microbiology, Washington, DC

    Google Scholar 

  • Perego M, Higgins CF, Pearce SR, Gallagher MP & Hoch JA (1991) The oligopeptide transport system of Bacillus subtilis plays a role in the initiation of sporulation. Mol Microbiol 5: 173-185

    Google Scholar 

  • Preininger M & Grosch W (1994) Evaluation of key odorants of the neutral volatiles of Emmentaler cheese by calculation of odour activity values. Lebensm. Wiss. Technol. 27: 237-244

    Google Scholar 

  • Preininger M, Warmke R & Grosch W (1996) Identification of the character impact flavour compounds of Swiss cheese by sensory studies of models. Z. Lebensm. Unters. Forsch. 202: 30-34

    Google Scholar 

  • Pritchard GG, Freebairn AD & Coolbear T (1994) Purification and characterization of an endopeptidase from Lactococcus lactis subsp. cremoris SK11. Microbiol. 140: 923-930

    Google Scholar 

  • Rallu F, Grass A & Maguin E (1996) Lactococcus lactis and stress. Antonie van Leeuwenhoek 70: 243-251

    Google Scholar 

  • Rantanen T & Palva A (1997) Lactobacilli carry cryptic genes encoding peptidase-related proteins: Characterization of a prolidase gene (pepQ) and a related cryptic gene (orfZ) from Lactobacillus delbrueckii subsp. bulgaricus. Microbiol. 143: 3899-3905

    Google Scholar 

  • Rawlings ND, Polgar L & Barrett AJ (1991) A new family of serine-type peptidases related lo prolyl oligopeptidase [letter]. Biochem J 279: 907-908

    Google Scholar 

  • Recsei PA, Huynh QK & Snell EE (1983) Conversion of prohistidine decarboxylase lo histidine decarboxylase: peptide chain cleavage by nonhydrolytic serinolysis. Proc. Nail. Acad. Sci. USA 80: 973-977

    Google Scholar 

  • Rescei PA & Snell EE (1981) In: Metabolic interconversion of enzymes 1980 ed. H. Holzen, pp. 335-344. Springer-Verlag: New York

    Google Scholar 

  • Recsei PA & Snell EE (1984) Pyruvoyl enzymes. Annu. Rev. Biochem. 53: 357-387

    Google Scholar 

  • Reiter B & Oram JD (1962) Nutritional studies on cheese starters. I. Vitamin and amino acid requirements of single strain starters. J Dairy Res. 29: 63-77

    Google Scholar 

  • Roig-Sagues AX, Hernandez-Herrero MN, Lopez-Sabater EI, Rodriguez-Jerez JJ & Mora-Ventura MT (1997) Evaluation of three decarboxylating agar media lo detect histamine and tyramine-producing bacteria in ripened sausages. Lett. Appl. Microbiol. 25: 309-312

    Google Scholar 

  • Rollan G, de Nadra MCM, Holgado PR & Oliver G (1985) Aspartate metabolism in Lactobacillus murinus CNRS 313. I. Aspartase. J. Gen. Appl. Microbiol. 31: 403-409

    Google Scholar 

  • Rollan G, de Nadra MCM, Holgado PR & Oliver G (1988) Aspartate aminotransferase of Lactobacillus murinus. Folia Microbiol. 33: 344-348

    Google Scholar 

  • Roudot-Algaron F & Yvon M (1998) Le catabolisme des acides aminés aromatiques el des acides aminés à chaîne ramifiée chez Lactococcus lactis. Lait 78: 23-30

    Google Scholar 

  • Rul F, Gripon J-C & Monnet V (1995) St-PepA, a Streptococcus thermophilus aminopeptidase with high specificity for acidic residues. Microbiol. 141: 2281-2287

    Google Scholar 

  • Rul F, Monnet V & Gripon JC (1994) Purification and characterization of a general aminopeptidase (St-PepN) from Streptococcus salivarius ssp. thermophilus CNRZ 302. J. Dairy Sci. 77: 2880-2889

    Google Scholar 

  • Sahlstrøm S, Chrzanowska J & Sorhaug T (1993) Purification and characterization of a cell wall peptidase from Lactococcus lactis ssp. cremoris IMN-C12. Appl. Environ. Microbiol. 59: 3076-3082

    Google Scholar 

  • Sanders JW, Leenhouts K, Burghoorn J, Brands JR, Venema G & Kok J (1998) A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation. Mol. Microbiol. 27: 299-310

    Google Scholar 

  • Sandine WE & Elliker PR (1970) Microbially induced flavors in fermented dairy products. J. Agric. Food Chem. 18: 557

    Google Scholar 

  • Santos MH (1996) Biogenic amines: their importance in foods. Int. J. Food Microbiol. 29: 213-231

    Google Scholar 

  • Sanz Y, Mulholland F & Toldrá F (1998) Purification and characterization of a tripeptidase from Lactobacillus sake. J. Agric. Food Chem. 46: 349-353

    Google Scholar 

  • Sasaki M, Bosman BW & Tan PST (1996) A new, broad-substrate-specificity aminopeptidase from the dairy organism Lactobacillus helveticus SBT 2171. Microbiol. 142: 799-808

    Google Scholar 

  • Schütte H, Hummel W & Kula M-R (1984) L-2-hydroxyisocaproate dehydrogenase-a new enzyme from Lactobacillus confusus for the stereospecific reduction of 2-ketocarboxylic acids. Appl. Microbiol. Biotechnol. 19: 167-176

    Google Scholar 

  • Shankar PA (1977) Interrelationships of Streptococcus thermophilus and Lactobacillus bulgaricus in yoghurt culture. Thesis, University of Reading, Reading, UK

    Google Scholar 

  • Shao W, Yüksel GÜ, Dudley EG, Parkin KL & Steele JL (1997) Biochemical and molecular characterization of PepR, a dipeptidase, from Lactobacillus helveticus CNRZ32. Appl. Environ. Microbiol. 63: 3438-3443

    Google Scholar 

  • Sheldon RM, Lindsay RC, Libbey LM & Morgan ME (1971) Chemical nature of malty flavor and aroma produced by Streptococcus lactis var. maltigenes. Appl. Microbiol. 22: 263-266

    Google Scholar 

  • Simitsopoulou M, Vafopoulou A, Choli Papadopoulou T & Alichanidis E (1997) Purification and partial characterization of a tripeptidase from Pediococcus pentosaceus K9.2. Appl. Environ. Microbiol. 63: 4872-4876

    Google Scholar 

  • Stepaniak L & Fox PF (1995) Characterization of the principal intracellular endopeptidase from Lactococcus lactis subsp. lactis MG1363. Int. Dairy. J. 5: 699-713

    Google Scholar 

  • Stepaniak L, Gobbetti M, Pripp AH & Sorhaug T (1998a) Isolation and characterization of a 67 kDa oligopeptidase from Propionibacterium freudenreichii ATCC 9614. Ital. J Food Sci. 10: 117-125

    Google Scholar 

  • Stepaniak L, Gobbetti M & Sorhaug T (1998b) Isolation and characterization of high molecular mass endopeptidase complex from Lactococcus lactis. Milchwissenschaft 53: 255-259

    Google Scholar 

  • Stepaniak L, Tobiassen RO, Chukwu I, Pripp AH & Sorhaug T (1998c) Purification and characterization of a 33 kDa subunit oligopeptidase from Propionibacterium freudenreichii ATCC 9614. Int. Dairy. J. 8: 33-37

    Google Scholar 

  • Stratton JE, Hutkins RW, Sumner SS & Taylor SL (1992) Histamine and histamine-producing bacteria in retail Swiss and low-salt cheeses. J. Food Prot. 55: 435-439

    Google Scholar 

  • Straub BW, Kicherer M, Schilcher SM & Hammes WP (1995) The formation of biogenic amines by fermentation microorganisms. Z. Lebensm. Unters. For. 201: 79-82

    Google Scholar 

  • Støman P (1992) Sequence of a gene (lap) encoding a 95.3-kDa aminopeptidase from Lactococcus lactis ssp. cremoris Wg2. Gene 113: 107-112

    Google Scholar 

  • Stucky K, Klein JR, Schueller A, Matern H, Henrich B & Plapp R (1995) Cloning and DNA sequence analysis of pepQ, a prolidase gene from Lactobacillus delbrueckii subsp. lactis DSM7290 and partial characterization of its product. Mol. Gen. Genet. 247: 494-500

    Google Scholar 

  • Stucky K, Schick J, Klein JR, Henrich B & Plapp R (1996) Characterization of pepR1, a gene coding for a potential transcriptional regulator of Lactobacillus delbrueckii subsp. lactis DSM7290. FEMS Microbiol. Lett. 136: 63-69

    Google Scholar 

  • Tamime AY & Deeth HC (1980) Yogurt: technology and biochemistry. J. Food Prot. 43: 939

    Google Scholar 

  • Tan PST & Konings WN (1990) Purification and characterization of an aminopeptidase from Lactococcus lactis ssp. cremoris Wg2. Appl. Environ. Microbiol. 56: 526-532

    Google Scholar 

  • Tan PST, Pos KM & Konings WN (1991) Purification and characterization of an endopeptidase from Lactococcus lactis ssp. cremoris Wg2. Appl. Environ. Microbiol. 57: 3593-3599

    Google Scholar 

  • Tan PST, Sasaki M, Bosman BW & Iwasaki T (1995) Purification and characterization of a dipeptidase from Lactobacillus helveticus SBT 2171. Appl. Environ. Microbiol. 61: 3430-3435

    Google Scholar 

  • Tan PST, Van Alen Boerrigter IJ, Poolman B, Siezen RJ, De Vos WM & Konings WN (1992) Characterization of the Lactococcus lactis pepN gene encoding an aminopeptidase homologous to mammalian aminopeptidase N. FEBS Lett. 306: 9-16

    Google Scholar 

  • Tan PST, Van Kessel TAJM, Van De Veerdonk FLM, Zuurendonk PF, Bruins AP & Konings WN (1993) Degradation and debittering of a tryptic digest from beta-casein by aminopeptidase N from Lactococcus lactis ssp. cremoris WG2. Appl. Environ. Microbiol. 59: 1430-1436

    Google Scholar 

  • Taylor SL, Keefe TJ, Windham ES & Howell JF (1982) Outbreak of histamine poisoning associated with consumption of Swiss cheese. J. Food Prot. 45: 455-457

    Google Scholar 

  • ten Brink B, Damink C, Joosten HM & Huis in't Veld JH (1990) Occurrence and formation of biologically active amines in foods. Int. J. Food Microbiol. 11: 73-84

    Google Scholar 

  • Timpone D & Steele JL (1999) Unpublished observations

  • Tobiassen RO, Pripp AH, Stepaniak L & Sørhaug T (1996) Purification and characterization of an endopeptidase from Propionibacterium freudenreichii. J. Dairy Sci. 79: 2129-2136

    Google Scholar 

  • Tobiassen RO, Sørhaug T & Stephaniak L (1997) Characterization of an intracellular oligopeptidase from Lactobacillus paracasei. Appl. Environ. Microbiol. 63: 1284-1287

    Google Scholar 

  • Tsakalidou E, Anastasiou R, Papadimitriou K, Manolopoulou E & Kalantzopoulos G (1998) Purification and characterisation of an intracellular X-prolyl-dipeptidyl aminopeptidase from Streptococcus thermophilus ACA-DC 4. J. Biotech. 59: 203-211

    Google Scholar 

  • Tsakalidou E, Dalezios I, Georgalaki M & Kalantzopoulos G (1993) A comparative study: Aminopeptidase activities from Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus. J. Dairy Sci. 76: 2145-2151

    Google Scholar 

  • Tsakalidou E & Kalantzopoulos G (1992) Purification and partial characterization of an intracellular aminopeptidase from Streptococcus salivarius ssp. thermophilus strain ACA-DC 114. J. Appl. Bacteriol. 72: 227-232

    Google Scholar 

  • Tucker JS & Morgan ME (1967) Decarboxylation of α-keto acids by Streptococcus lactis var. maltigenes. Appl. Microbiol. 15: 694-700

    Google Scholar 

  • Tynkkynen S, Buist G, Kunji E, Kok J, Poolman B, Venema G & Haandrikman A (1993) Genetic and biochemical characterization of the oligopeptide transport system of Lactococcus lactis. J. Bacteriol. 175: 7523-7532

    Google Scholar 

  • Ueno Y, Hayakawa K, Takahashi S & Oda K (1997) Purification and characterization of glutamate decarboxylase from Lactobacillus brevis IFO 12005. Biosci. Biotech. Biochem. 61: 1168-1171

    Google Scholar 

  • Umbarger HE (1996) Biosynthesis of the branched-chain amino acids. In: Neidhardt FC (Ed) Escherichia coli and Salmonella: cellular and molecular biology, 2nd Ed, Vol 1 (pp 442-457). ASM Press, Washington DC

    Google Scholar 

  • Urbach G (1995) Contribution of lactic acid bacteria to flavor compound formation in dairy products. Int. Dairy J. 5: 877-903

    Google Scholar 

  • Van Alen-Boerrigter IJ, Baankreis R & De Vos WM (1991) Characterization and overexpression of the Lactococcus lactis pepN gene and localization of its product, aminopeptidase N. Appl. Environ. Microbiol. 57: 2555-2561

    Google Scholar 

  • Van Boven A, Tan PST & Konings WN (1988) Purification and characterization of a dipeptidase from Streptococcus cremoris Wg2. Appl. Environ. Microbiol. 54: 43-49

    Google Scholar 

  • Vanderslice P, Copeland WC & Robertus JD (1986) Cloning and nucleotide sequence of wild type and a mutant histidine decarboxylase from Lactobacillus 30a. J. Biol. Chem. 261: 15186-15191

    Google Scholar 

  • Vangtal A & Hammond EG (1986) Correlation of the flavor characteristics of Swiss-type cheeses with chemical parameters. J. Dairy Sci. 69: 2982-2993

    Google Scholar 

  • Varmanen P, Rantanen T & Palva A (1996a) An operon from Lactobacillus helveticus composed of a proline iminopeptidase gene (pepI) and two genes coding for putative members of the ABC transporter family of proteins. Microbiol. 142: 3459-3468

    Google Scholar 

  • Varmanen P, Rantanen T, Palva A & Tynkkynen S (1998) Cloning and characterization of a prolinase gene (pepR) from Lactobacillus rhamnosus. Appl. Environ. Microbiol. 64: 1831-1836

    Google Scholar 

  • Varmanen P, Steele J & Palva A (1996b) Characterization of a prolinase gene and its product and an adjacent ABC transporter gene from Lactobacillus helveticus. Microbiol. 142: 809-816

    Google Scholar 

  • Varmanen P, Vesanto E, Steele JL & Palva A (1994) Characterization and expression of the pepN gene encoding a general aminopeptidase from Lactobacillus helveticus. FEMS Microbiol. Lett. 124: 315-320

    Google Scholar 

  • Vesanto E, Peltoniemi K, Purtsi T, Steele JL & Palva A (1996) Molecular characterization, over-expression and purification of a novel dipeptidase from Lactobacillus helveticus. Appl. Microbiol. Biotech. 45: 638-645

    Google Scholar 

  • Vesanto E, Savijoki K, Rantanen T, Steele JL & Palva A (1995) An X-prolyl dipeptidyl aminopeptidase (pepX) gene from Lactobacillus helveticus. Microbiol. 141: 3067-3075

    Google Scholar 

  • Vesanto E, Varmanen P, Steele JL & Palva A (1994) Characterization and expression of the Lactobacillus helveticus pepC gene encoding a general aminopeptidase. Eur. J. Biochem. 224: 991-997

    Google Scholar 

  • Voight MN & Eitenmiller RR (1978) Role of histidine and tyrosine decarboxylases and mono-and diamine oxidases in amine buildup in cheese. J. Food Prot. 41: 182-186

    Google Scholar 

  • Vongerichten KF, Klein JR, Matern H & Plapp R (1994) Cloning and nucleotide sequence analysis of pepV, a carnosinase gene from Lactobacillus delbrueckii subsp. lactis DSM 7290, and partial characterization of the enzyme. Microbiol. 140: 2591-2600

    Google Scholar 

  • Wijesundera KM & Urbach G (1993) Flavor of Cheddar cheese. Final report to the Dairy Research and Development Corporation, Project CSt66

  • Wilkins DW, Schmidt RH & Kennedy LB (1986) Threonine aldolase activity in yogurt bacteria as determined by headspace gas chromatography. J. Agric. Food Chem. 34: 150-152

    Google Scholar 

  • Wohlrab Y & Bockelmann W (1992) Purification and characterization of a dipeptidase from Lactobacillus delbrueckii subsp. bulgaricus. Int. Dairy. J. 2: 345-361

    Google Scholar 

  • Wohlrab Y & Bockelmann W (1993) Purification and characterization of a second aminopeptidase (PepC-like) from Lactobacillus delbrueckii subsp. bulgaricus B14. Int. Dairy. J. 3: 685-701

    Google Scholar 

  • Wohlrab Y & Bockelmann W (1994) Purification and characterization of a new aminopeptidase from Lactobacillus delbrueckii subsp. bulgaricus B14. Int. Dairy. J. 4: 409-427

    Google Scholar 

  • Yan TR, Azuma N, Kaminogawa S & Yamauchi K (1987a) Purification and characterization of a novel metalloendopeptidase from Streptococcus cremoris H61: A metalloendopeptidase that recognizes the size of its substrate. Eur. J. Biochem. 163: 259-266

    Google Scholar 

  • Yan TR, Azuma N, Kaminogawa S & Yamauchi K (1987b) Purification and characterization of a substrate-size-recognizing metalloendopeptidase from Streptococcus cremoris H61. Appl. Environ. Microbiol. 53: 2296-2302

    Google Scholar 

  • Yan TR, Lin MZ, Lin MJ & Sun BJ (1991) Purification and characterization of an X-prolyl-dipeptidyl aminopeptidase from Streptococcus cremoris nTR. J. Chin. Biochem. Soc. 20: 21-32

    Google Scholar 

  • Yang TS & Min DB (1993) Dynamic headspace analysis of volatile compounds of Cheddar and Swiss cheeses during ripening. In: Charalambous (ED) Food Flavors, Ingredients and Composition, (pp 157-174), Elsevier Science Publishers BV, Amsterdam

    Google Scholar 

  • Yen C, Green L & Miller CG (1980a) Degradation of intracellular protein in Salmonella typhimurium peptidase mutants. J. Mol. Biol. 143: 21-33

    Google Scholar 

  • Yen C, Green L & Miller CG (1980b) Peptide accumulation during growth of peptidase deficient mutants. J. Mol. Biol. 143: 35-48

    Google Scholar 

  • Yokoyama MT & Carlson JR (1981) Production of skatole and para-cresol by a rumen Lactobacillus sp. Appl. Environ. Microbiol. 41: 71-76

    Google Scholar 

  • Yoshpe-Besançon I, Gripon J-C & Ribadeau-Dumas B (1994) Xaa-Pro-dipeptidyl-aminopeptidase from Lactococcus lactis catalyses kinetically controlled synthesis of peptide bonds involving proline. Biotech. Appl. Biochem. 20: 131-140

    Google Scholar 

  • Yüksel GÜ & Steele JL (1996) DNA sequence analysis, expression, distribution, and physiological role of the Xaa-prolyldipeptidyl aminopeptidase gene from Lactobacillus helveticus CNRZ32. Appl. Microbiol. Biotech. 44: 766-773

    Google Scholar 

  • Yüksel GÜ & Steele JL (1997a) Direct sequence submission to GenBank for a prolidase (pepQ) from Lactobacillus helveticus CNRZ32 (Accession AF012084). Unpublished

  • Yüksel GÜ & Steele JL (1997b) Direct sequence submission to GenBank for pepV from Lactobacillus helveticus CNRZ32 (Accession AF012085). Unpublished

  • Yüksel GÜ & Steele JL (1999) Proline-specific peptidases of Lactobacillus helveticus CNRZ32: Cloning and DNA sequence analysis of pepQ, a prolidase gene, and characterization of peptidase-deficient mutants. Unpublished results

  • Yvon M, Thirouin S, Rijnen L, Fromentier D & Gripon JC (1997) An aminotransferase from Lactococcus lactis initiates conversion of amino acids to cheese flavor compounds. Appl. Environ. Microbiol. 63: 414-419

    Google Scholar 

  • Zevaco C, Monnet V & Gripon JC (1990) Intracellular X-prolyl dipeptidyl peptidase from Lactococcus lactis ssp. lactis: Purification and properties. J. Appl. Bacteriol. 68: 357-366

    Google Scholar 

  • Zoon P & Allersma D (1996) Eye and crack formation in cheese by carbon dioxide from decarboxylation of glutamic acid. Neth. Milk Dairy J. 50: 309-318

    Google Scholar 

  • Zúñiga M, Champomier-Verges M, Zagorec M & Pérez-Martínez G (1998) Structural and functional analysis of the gene cluster encoding the enzymes of the arginine deiminase pathway of Lactobacillus sake. J. Bacteriol. 180: 4154-4159

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James L. Steele.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christensen, J.E., Dudley, E.G., Pederson, J.A. et al. Peptidases and amino acid catabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 76, 217–246 (1999). https://doi.org/10.1023/A:1002001919720

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002001919720

Navigation