Skip to main content
Log in

Spectral Representation and the Averaging Problem in Cosmology1

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We investigate the averaging problem in cosmology as the problem of introducing a distance between spaces. We first introduce the spectral distance, which is a measure of closeness between spaces defined in terms of the spectra of the Laplacian. Then we define S N, a space of all spaces equipped with the spectral distance. We argue that S N can be regarded as a metric space and that it also possesses other desirable properties. These facts make S N a fundamental arena for spacetime physics. Then, we apply the spectral framework to the averaging problem: We describe the model-fitting procedure in terms of the spectral representation, and also discuss how to analyze the dynamical aspects of the averaging procedure with this scheme. In these analyses, we are naturally led to the concept of the apparatus-dependent and the scale-dependent effective evolution of the universe. These observations suggest that the spectral scheme seems to be suitable for the quantitative analysis of the averaging problem in cosmology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. For instance, Ellis, G. F. R. (1984). in Proceedings of the Tenth International Conference on General Relativity and Gravitation, B. Bertotti, F. De Felice, and A. Pascolini, eds. (Reidel, Dordrecht); Sato, H. ibid; Futamase, T. (1988) Phys. Rev. Lett. 61, 2175; (1989). Mon. Not. R. astr. Soc. 237, 187.

    Google Scholar 

  2. For a concise review of the averaging problem, see Krasiński, A. (1997). Inhomogeneous Cosmological Models (Cambridge University Press, Cambridge), Chapter 8. See also the references therein.

    Google Scholar 

  3. Gromov, M., Lafontaine, J., and Pansu, P. (1981). Structures Métriques pour les Variétés Riemannienness (Cedic/Fernand Nathan, Paris).

    Google Scholar 

  4. Petersen, P. (1998). Riemannian Geometry (Springer-Verlag, New York), Chapter 10.

    Google Scholar 

  5. Seriu, M. (1996). Phys. Rev. D 53, 6902.

    Google Scholar 

  6. Kac, M. (1966). Am. Math. Mon. 73(4), 1.

    Google Scholar 

  7. Seriu, M. (1993). Phys. Let. B 319, 74; Seriu, M. (1993). Vistas in Astronomy 37, 637.

    Google Scholar 

  8. See, e.g., Chavel, I. (1984). Eigenvalues in Riemannian Geometry (Academic Press, Orlando).

    Google Scholar 

  9. Seriu, M. (1999). in K. Oohara et al., eds., Proceedings of the 8th Workshop on General Relativity and Gravitation, (Niigata University).

  10. Seriu, M. (2000). Comm. Math. Phys. 209, 393.

    Google Scholar 

  11. Lang, S. (1969). Real Analysis (Addison-Wesley, Reading), Chapter 12.

    Google Scholar 

  12. Seriu, M. (1996). Phys. Rev. D 53, 1889.

    Google Scholar 

  13. Hosoya, A., and Nakao, K. (1990) Prog. Theo. Phys. 84, 739.

    Google Scholar 

  14. Seriu, M. (2000). gr-qc/0003042 to appear in Phys. Rev. D 62.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seriu, M. Spectral Representation and the Averaging Problem in Cosmology1. General Relativity and Gravitation 32, 1473–1485 (2000). https://doi.org/10.1023/A:1001977900785

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1001977900785

Navigation