Skip to main content
Log in

Dynamics of Rotating Cylindrical Shells in General Relativity

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Cylindrical spacetimes with rotation are studied using the Newmann–Penrose formulas. By studying null geodesic deviations, the physical meaning of each component of the Riemann tensor is given. These spacetimes are further extended to include rotating dynamic shells, and the general expression of the surface energy-momentum tensor of the shells is given in terms of the discontinuity of the first derivatives of the metric coefficients. As an application of the developed formulas, a stationary shell that generates the Lewis solutions, which represent the most general vacuum cylindrical solutions of the Einstein field equations with rotation, is studied by assuming that the spacetime inside the shell is flat. It is shown that the shell can satisfy all the energy conditions by properly choosing the parameters appearing in the model, provided that 0 ≤ σ ≤ 1, where σ is related to the mass per unit length of the shell. PACS numbers: 04.20Cv, 04.30.+x, 97.60.Sm, 97.60.Lf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Joshi, P. S. Global Aspects in Gravitation and Cosmology (Clarendon, Oxford, 1993).

    Google Scholar 

  2. Choptuik, M. W. (1993). Phys. Rev. Lett. 70, 9; Gundlach, C. (1998). Adv. Theor. Math. Phys. 2, 1; gr-qc/971208.

    Google Scholar 

  3. Shapiro, S. L., and Teukolsky, S. A. (1991). Phys. Rev. Lett. 66, 994.

    Google Scholar 

  4. Apostolatos, T. A., and Thorne, K. A. (1992). Phys. Rev. D46, 2433.

    Google Scholar 

  5. Wang, A. Z., da Silva, M. F. A., and Santos, N. O. (1997). Class. Quantum Grav. 14, 2417.

    Google Scholar 

  6. da Silva, M. F. A., Wang, A. Z., Paiva, F. M., and Santos, N. O. (2000). Phys. Rev. D61, 044003.

    Google Scholar 

  7. Kramer, D., Stephani, H., Herlt, E., and MacCallum, M. Exact Solutions of Einstein' Field Equations, (Cambridge University Press, Cambridge, England, 1980), p. 221.

    Google Scholar 

  8. Bonnor, W. B. (1992). Gen. Rel. Grav. 24 551; Bonnor, W. B., Griffiths, J. B., and MacCallum, M. A. H. (1994). ibid. 26, 687.

    Google Scholar 

  9. Newmann, E., and Penrose, R. (1962). J. Math. Phys. 3, 566; ibid. 4, 998 (1963).

    Google Scholar 

  10. Israel, W., Cimento, Nuovo, (1966). B44, 1; ibid. 48B, 463(E) (1967).

  11. Darmois, G. Mémorial des Sciences Mathematiques (Gauthier-Villars, Paris), Fasc. 25.

  12. Lichnerowicz, A. Théories Relativistes de la Gravitation et de l' Électromagnétisme (Masson, Paris), p. 61.

  13. Papapetrou, A., and Hamoui, A. (1968). Ann. Inst. Henri. Poicaré, 9, 179.

    Google Scholar 

  14. Taub, A. H. (1980). J. Math. Phys. 21, 1423.

    Google Scholar 

  15. Bonnor, W. B., and Vickers, P. A. (1981). Gen. Relativ. Grav. 13, 29.

    Google Scholar 

  16. Lewis, T. (1932). Proc. Roy. Soc. Lond. A136, 176.

    Google Scholar 

  17. Hashoon, B., and Quevedo, H. (1990). Phys. Lett. A151, 464; Quevedo, H., and Mashhoon, B. “Cylindrically Symmetric Gravitational Waves with Rotational Properties”, in Proc. SILARG VII (Mexico City, Dec. 1990).

    Google Scholar 

  18. Thorne, K. (1965). Phys. Rev. B138, 251.

    Google Scholar 

  19. Misner, C. W., Thorne, K. S., and Wheeler, J. A. Gravitation (W. H. Freemann, San Francisco, 1973) pp. 953–955.

    Google Scholar 

  20. Pereira, P. R. C. T., Santos, N. O., and Wang, A. Z. (1996). Class Quantum Grav. 13, 1641.

    Google Scholar 

  21. MacCallum, M. A. H., and Santos, N. O. (1998). Class. Quantum Grav. 15, 1627.

    Google Scholar 

  22. Szekeres, P. (1965). J. Math. Phys. 6, 1387; ibid. 7, 751 (1966).

    Google Scholar 

  23. Wang, A. Z. (1991). Phys. Rev. D44, 1120.

    Google Scholar 

  24. Letelier, P. S., and Wang, A. Z. (1994). Phys. Rev. D49, 5105.

    Google Scholar 

  25. Frolov, V. P. in “Problems in the General Theory of Relativity and Theory of Group Representations,” edited by N. G. Basov, Proceedings (Trudy) of the P. N. Lebedev Physics Institute, Vol. 96, translated from Russian by A. Mason (Consultants Bureau New York and London, 1979) pp. 73–185.

  26. Wang, A. Z. (1992). Phys. Rev. D45, 3534; J. Math. Phys. 33, 1065 (1992).

    Google Scholar 

  27. Hawking, S. W., and Ellis, G. F. R. The Large Scale Structure of Spacetime, (Cambridge University Press, Cambridge, 1973), pp. 88–96.

    Google Scholar 

  28. Letelier, P. S., and Wang, A. Z. “Cosmic Bubbles and Rotating Black Holes,” in Gravitation: The spacetime Structure, SILARG VIII, Proceedings of the 8th Latin American Symposium on Relativity and Gravitation, Aguas de Lindóia, Brazil, 25–30 July, 1993, Edited by P. S. Letelier and W. A. Rodrigues, Jr. (World Scientific, 1994), pp. 332–338.

  29. Frehland, E. (1972). Commun. Math. Phys. 26, 307; Papapetrou, A., Macedo, A., and Som, M. M. (1978). Inter. J. Theor. Phys. 17, 975; Jordan, S. R., and McCrea, J. D. (1982). J. Phys. A: Math. Gen. 15, 1907; Stachel, J. (1984). J. Math. Phys. 25, 338.

    Google Scholar 

  30. Landau, L. D., and Lifshitz, E. M. The Classical Theory of Fields, (Pergamon Press, New York, 1975), p. 254.

    Google Scholar 

  31. da Silva, M. F. A., Herrera, L., Paiva, F. M., and Santos, N. O. (1995). Gen. Relativ. Grav. 27, 859; Class. Quantum Grav. 12, 111 (1995).

    Google Scholar 

  32. MacCallum, M. A. H. (1998). Gen. Relativ. Grav. 30, 131.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anzhong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, P.R.C.T., Wang, A. Dynamics of Rotating Cylindrical Shells in General Relativity. General Relativity and Gravitation 32, 2189–2218 (2000). https://doi.org/10.1023/A:1001954604324

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1001954604324

Keywords

Navigation