Skip to main content
Log in

Dirac Equation in Lemaįtre—Tolman—Bondi Models

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The Dirac equation is studied for a sufficiently large class of Lemaįtre—Tolman—Bondi cosmological models. While the angular equation (whose solution is known) separates directly, the spatial and temporal dependence de-couples only after a suitable separation procedure. The separated time equation is integrated by series. The separated spatial equation still depends on an arbitrary function relative to the integration of the cosmological model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Illge, R. (1993). Commun. Math. Phys. 158, 433.

    Google Scholar 

  2. Buchdahl, H. A. (1962). Nuovo Cimento 25, 486.

    Google Scholar 

  3. Wünsch, V. (1978). Beitr. zur Analysis 12, 47.

    Google Scholar 

  4. Wünsch, V. (1979). Beitr. zur Analysis 13, 147.

    Google Scholar 

  5. Penrose, R., and Rindler, W. (1990). Spinors and Space-time(2 vols., Cambridge University Press, Cambridge).

    Google Scholar 

  6. Newmann, E. T., and Penrose, R. (1962). J. Math. Phys. 3, 566.

    Google Scholar 

  7. Birrell, N. D., and Davies, P. C. W. (1982). Quantum Fields in Curved Space-Time(Cambridge University Press, Cambridge).

    Google Scholar 

  8. Chandrasekhar, S. (1976). Proc. Roy. Soc. London A 349, 571.

    Google Scholar 

  9. Chandrasekhar, S. (1983). The Mathematical Theory of Black Holes(Oxford University Press, New York).

    Google Scholar 

  10. Parker, L. (1971). Phys. Rev. D 3, 346.

    Google Scholar 

  11. Unruh, W. G. (1974). Phys. Rev. D 10, 3194.

    Google Scholar 

  12. Ford, L. H. (1976). Phys. Rev. D 14, 3304.

    Google Scholar 

  13. Kalnins, E. G., Miller, W., Jr, and Williams, G. C. (1992). Phil. Trans. Roy. Soc. A 340, 337.

    Google Scholar 

  14. Zecca, A. (1996). J. Math. Phys. 37, 874.

    Google Scholar 

  15. Montaldi, E., Zecca, A. (1998). Int. J. Theor. Phys. 37, 995.

    Google Scholar 

  16. Lemaître, G. (1933). Annales Soc. Sci. de Bruxelles A 53, 51; reprinted (1997). Gen. Rel. Grav. 29, 641.

    Google Scholar 

  17. Tolman, R. C. (1934). Proc. Nat. Academy of Sciences USA 20, 169; reprinted (1997). Gen. Rel. Grav. 29, 931.

    Google Scholar 

  18. Bondi, H. (1947). Mon. Not. Roy. Astron. Soc. 107, 410; reprinted (1999). Gen. Rel. Grav. 31, 1783.

    Google Scholar 

  19. Krasiński, A. (1997). Inhomogeneous Cosmological Models(Cambridge University Press, Cambridge).

    Google Scholar 

  20. Zecca, A. (1993). Int. J. Theor. Phys. 32, 615.

    Google Scholar 

  21. Demiański, H., Lasota, J. P. (1973). Nature Physical Science 241, 53.

    Google Scholar 

  22. Zecca, A. (1995). Int. J. Theor. Phys. 34, 1083.

    Google Scholar 

  23. Teukolski, S. A. (1973). Astrophys. J. 185, 635.

    Google Scholar 

  24. Montaldi, E. and Zecca, A.(1994). Int. J. Theor. Phys. 33, 1053.

    Google Scholar 

  25. Zecca, A. (1998). Nuovo Cimento B 113, 915.

    Google Scholar 

  26. Zecca, A. (1998). Nuovo Cimento B 113, 195.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zecca, A. Dirac Equation in Lemaįtre—Tolman—Bondi Models. General Relativity and Gravitation 32, 1197–1206 (2000). https://doi.org/10.1023/A:1001950718322

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1001950718322

Navigation