Skip to main content
Log in

Genetic Control of Biogenic-Amine Systems in Drosophila Under Normal and Stress Conditions

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

The contents of octopamine and its precursors (tyrosine and tyramine) were studied in adults of two lines of Drosophila virilis with contrasting stress responses. It was demonstrated that in individuals responding to stress by a hormonal stress reaction (line 101), the contents of octopamine and tyrosine are lower than in nonresponding flies (line 147). It was found that there is no difference between the lines in the level of tyramine under normal conditions. The dopamine response to stressor was also studied. Genetic analysis of these differences revealed that they are controlled by a single gene and that the gene is not sex-linked. The gene controlling the response was found to be linked to chromosome 6 of D. virilis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Brown, C. S., and Nestler, C. (1985). Catecholamines and indolalkylamines. In Kerkut, G. A., and Gilbert, L. I. (eds.), Comprehensive Insect Physiology, Biochemistry and Pharmacology, Pergamon Press, Oxford.

    Google Scholar 

  • Cymborowski, B. (1988). Effect of cooling stress on endocrine events in Galleria mellonella. In Sehnal, F., Zabza, A., and Delinger, D. L. (eds.), Endocrinological Frontiers in Physiological Insect Ecology, Wroclaw Technical University Press, Wroclaw, Vol. 1, pp. 203–212.

    Google Scholar 

  • Davenport, A. K., and Evans, P. D. (1984). Stress-indiced changes in octopamine levels of insect haemolymph. Insect Biochem. 14:135.

    Google Scholar 

  • Evans, P. D. (1985). Octopamine. In Kerkut, G. A., and Gilbert, L. I. (eds.), Comprehensive Insect Physiology, Biochemistry and Pharmacology, Pergamon Press, Oxford.

    Google Scholar 

  • Evans, P. D., Davenport, A. P., Elias, M. S., Morton, D. B., and Trimmer, B. A. (1986). Assays for biogenic amines in insect nervous tissue. In Breer, H., and Miller, T. A. (eds.), Neurochemical Techniques in Insect Research, Springer, Berlin, Heidelberg, New York.

    Google Scholar 

  • Falconer, D. S. (1960). In Introduction to Quantative Genetics, Oliver and Boyd, Edinburg, p. 246.

    Google Scholar 

  • Grenback, L. G., Khlbodarova, T. M., Gruntenko, N. E., Sukhanova, M. Jh., Shumnaya, L. V., and Rauschenbach, I. Yu. (1997). Genetic control of stress response of juvenile hormone metabolism in Drosophila virilis. Russ.J.Genet. 33:202.

    Google Scholar 

  • Gruntenko, N. E., Khlebodarova, T. M., Sukhanova, M. J., Vasenkova, I. A., Kaidanov, L. Z., and Rauschenbach, I. Y. (1998). Selection for sexual behavior modifies juvenile hormone metabolism in Drosophila melanogaster. Russ.J.Genet. 34:625.

    Google Scholar 

  • Hirashima, A., and Eto, M. (1993a). Chemical-induced changes in the biogenic amine levels of Periplaneta americana L. Pest.Biochem.Physiol. 46:131.

    Google Scholar 

  • Hirashima, A., and Eto, M. (1993b). Biogenic amines in Periplaneta americana L.: Accumulation of octopamine, synephrine, and tyramine by stress. Biosci.Biotech.Biochem. 57:172.

    Google Scholar 

  • Hirashima, A., and Eto, M. (1993c). Effect of stress on level of octopamine, dopamine, and serotonin in the American cockroach (Periplaneta americana L.). Comp.Biochem.Physiol. 105C:279.

    Google Scholar 

  • Hirashima, A., Nagano, T., and Eto, M. (1994). Effect of various insecticides of the larval growth and biogenic amine levels of Tribolium castaneum Herbst. Comp.Biochem.Physiol. 107C:393.

    Google Scholar 

  • Hirashima, A., Sukhanova, M. Jh., Kuwano, E., and Rauschenbach, I. Yu. (1999). Alteration of biogenic amines in Drosophila virilis under stress. Dros.Info.Serv. 82:30.

    Google Scholar 

  • Jankovic-Hladni, M. I. (1991). Hormones and metabolism in insect stress (historical survey). In Ivanovic, J., and Jancovic-Hlandni, M. (eds.), Hormones and Metabolism in Insect Stress, CRC Press, Boca Raton, FL, pp. 5–26.

    Google Scholar 

  • Khlebodarova, T. M., Grenback, L. G., Gruntenko, N. E., Sukhanova, M. Jh., Vasenkova, I. A., Shumnaya, L. V., and Rauschenbach, I. Yu. (1998). The gene controlling the stress response of the juvenile hormone degradation in adult of Drosophila virilis is located on chromosome 6. Russ.J.Genet. 34:625.

    Google Scholar 

  • Kozanek, M., Jurani, M., and Somgyiova, E. (1988). Effect of long-term stress on monoamine concentration in CNS of cockroach Nauphoeta cinerea. In Sehnal, F., Zabza, A., and Delinger, D. L. (eds.), Endocrinological Frontiers in Physiological Insect Ecology, Wroclaw Technical University Press, Wroclaw.

    Google Scholar 

  • Maickel, P., Cox, R. H., Saillant, J., and Miller, F. P. (1968). A method for the determination of serotonin and noradrenaline in discrete areas of rat brain. Int.J.Neuropharmacol. 7:275.

    PubMed  Google Scholar 

  • Orchard, I., Carlisle, J. C., Loughton, B. G., Gole, J. W., and Downer, R. G. H. (1982). In vitro studies on the effect of octopamine on locus fat body. Gen.Comp.Endocrinol. 48:7.

    PubMed  Google Scholar 

  • Rauschenbach, I. Yu. (1991). Changes in ecdysteroids and juvenile hormone under heat stress. In Ivanovic, J., and Jancovic-Hlandni, M. (eds.), Hormones and Metabolism in Insect Stress, CRC Press, Boca Raton, FL, pp. 115–148.

    Google Scholar 

  • Rauschenbach, I. Yu. (1997). Stress response in insects: Mechanism, genetic control and role in adaptation. Russ.J.Genet. 33:1110.

    Google Scholar 

  • Rauschenbach, I. Yu., Lukashina, N. S., and Korochkin, L. I. (1984). Genetic of esterases in Drosophila. VIII. The gene controlling the activity of JH-esterase in D.virilis. Biochem.Genet. 22:5.

    Google Scholar 

  • Rauschenbach, I. Y., Lukashina, N. S., Maksimovsky, L. F., and Korochkin, L. I. (1987). Stress-like reaction of Drosophila to adverse environmental factors. J.Comp.Physiol. 157B:519.

    Google Scholar 

  • Rauschenbach, I. Yu., Serova, L. I., Timochina, I. S., Chentsova, N. A., and Shumnaya, L. V. (1993). Analysis of differences in dopamine content between two lines of Drosophila virilis in response to heat stress. J.Insect Physiol. 39:761.

    Google Scholar 

  • Rauschenbach, I. Y., Khlebodarova, T. M., Chentsova, N. A., Gruntenko, N. E., Grenback, L. G., Yantsen, E. I., and Filipenko, M. L. (1995a). Metabolism of the juvenile hormone in Drosophila adults under normal conditions and heat stress. J.Insect Physiol. 41:179.

    Google Scholar 

  • Rauschenbach, I. Yu., Shumnaya, L. V., Khlebodarova, T. M., Chentsova, N. A., and Grenback, L. G. (1995b). Role of phenol oxydases and tyrosine hydroxylase in control of dopamine content in Drosophila virilis under normal conditions and heat stress. J.Insect Physiol. 41:279.

    Google Scholar 

  • Rauschenbach, I. Yu., Sukhanova, M. Jh., Shumnaya, L. V., Gruntenko, N. E., Grenback, L. G., Khlebodarova, T. M., and Chentsova, N. A. (1997). Role of dopa decarboxylase and N-acetyl transferase in regulation of dopamine content in Drosophila virilis under normal and heat stress conditions. Insect Biochem.Mol.Biol. 27:729.

    PubMed  Google Scholar 

  • Sukhanova, M. Z., Grenback, L. G., Gruntenko, N. E., Khlebodarova, T. M., and Rauschenbach, I. Yu. (1996). Alkaline phosphatase in Drosophila virilis under stress. J.Insect Physiol. 42:161.

    Google Scholar 

  • Sukhanova, M. Jh., Shumnaya, L. V., Grenback, L. G., Gruntenko, N. E., Khlebodarova, T. M., and Rauschenbach, I. Yu. (1997a). Tyrosine decarboxylase and dopa decarboxylase in Drosophila virilis under heat stress. Biochem.Genet. 35:91.

    PubMed  Google Scholar 

  • Sukhanova, M. Jh., Khlebodarova, T. M., Grenback, L. G., Gruntenko, N. E., Shumnaya, L. V., and Rauschenbach, I. Yu. (1997b). N-Acetylation of biogenic amines in D.virilis.Russ. J.Genet. 33:788.

    Google Scholar 

  • Sukhanova, M. Zh., Vasenkova, I. A., Grenback, L. G., Gruntenko, N. E., Khlebodarova, T. M., and Rauschenbach, I. Y. (1999). Drosophila virilis genes regulating alkaline phosphatase and tyrosine decarboxylase activities are assigned to chromosome 6. Russ.J.Genet. 35:50.

    Google Scholar 

  • Hirashima, A., Sukhanova, M. Jh., and Rauschenbach, I. Yu. (2000). Biogenic amines in Drosophila virilis under stress conditions. Biosci.Biotechnol.Biochem. in press.

  • Woodring, J. P., Meier, O. W., and Rose, R. (1988). Effect of development, photoperiod, and stress on octopamine levels in the house cricket, Acheta demosticus. J.Insect Physiol. 34:759.

    Google Scholar 

  • Wright, T. R. F. (1987). The genetics of biogenic amine metabolism, sclerotization, and melanization in Drosophila melanogaster. Adv.Genet. 24:127.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirashima, A., Sukhanova, M.J. & Rauschenbach, I.Y. Genetic Control of Biogenic-Amine Systems in Drosophila Under Normal and Stress Conditions. Biochem Genet 38, 163–176 (2000). https://doi.org/10.1023/A:1001925613951

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1001925613951

Navigation