Skip to main content
Log in

Dependence of Arabidopsis Thaliana Floral Stem Growth and Architecture on Photoperiod

  • Published:
Biologia Plantarum

Abstract

The influence of the applied photoperiod during floral stem development has been studied. A clear relationship between the length of the photoperiod, the frequency of light/dark switches, and the dynamic of growth and the subsequent morphology and architecture has been found. An increase in the day length (L/D = 16/8) or an increase in frequency of light/dark transitions (L/D = 7/7) stimulated the inflorescence growth. The two treatments induced the same enlargement in the early inflorescence, but the L/D = 7/7 condition causes a greater increase in the late one. The treatments induced also a diminution in the number of lateral inflorescences, principally with the high frequency light-on/light-off condition. Moreover than differences in the growth along the early inflorescence, at the level of the internode, a gradual growth was observed from the basal part to the upper part of the internode. Finally, the floral stem growth dynamic showed that it could be adapted to the environmental light/dark signalling by a good extension rate synchronisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beever, J.E., Woolhouse, H.W.: Changes in the growth of roots and shoots when Perilla frutescens L. is induced to flower.-J. exp. Bot. 26: 451-463, 1975.

    Google Scholar 

  • Bünning, E.: The Physiological Clock.-Springer-Verlag, Berlin 1973.

    Google Scholar 

  • Cline, M.J.: Apical dominance.-Bot. Rev. 57: 318-358, 1991.

    Google Scholar 

  • Coenen, C., Lomax, T.L.: Auxin-cytokinin interactions in higher plants: old problems and new tools.-Trends Plant Sci. 2: 351-356, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Degli Agosti, R., Jouve, L., Greppin, H.: Computer-assisted measurements of plant growth with linear variable differential transformer (LVDT) sensors.-Arch. Sci. Genève 50: 233-244, 1997.

    CAS  Google Scholar 

  • Harrison, M.A., Kaufman, P.B.: Hormonal regulation of lateral bud (tiller) release in oats (Avena sativa L.).-Plant Physiol. 66: 1123-1127, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Haughn, W.J., Shultz, E.A., Martinez-Zapater, J.M.: The regulation of flowering in Arabidopsis thaliana: meristems, morphogenesis, and mutants.-Can. J. Bot. 73: 959-981, 1995.

    CAS  Google Scholar 

  • Hempel, F.D., Feldman, L.J.: Bi-directional inflorescence development in Arabidopsis thaliana: acropetal initiation of flowers and basipetal initiation of paraclades.-Planta 192: 276-286, 1994.

    Article  Google Scholar 

  • Jouve, L., Greppin, H., Degli Agosti, R.: Floral stem extension rate measurement in Arabidopsis thaliana.-Experientia 52: A23 (S08-27), 1996.

    Google Scholar 

  • Jouve, L., Greppin, H., Degli Agosti, R.: Arabidopsis thaliana floral stem elongation: Evidence for an endogenous circadian rhythm.-Plant Physiol. Biochem. 36: 469-472, 1998.

    Article  CAS  Google Scholar 

  • Kerckhoffs, L.H.J., Sengers, M.M.T., Kendrick, R.E.: Growth analysis of wild-type and photomorphogenic-mutant tomato plants.-Physiol. Plant. 99: 309-315, 1997.

    Article  CAS  Google Scholar 

  • Krekule, J., Macháčková, I.: The possible role of auxin and its metabolic changes in the photoperiodic control of flowering.-In: Greppin, H., Penel, C., Gaspar, T. (ed.): Molecular and Physiological Aspects of Plant Peroxidases. Pp. 341-351. University of Geneva, Geneva 1986.

    Google Scholar 

  • Krekule, J., Macháčková, I., Pavlová, L., Seidlová, F.: Hormonal signals in photoperiodic control of flower initiation.-In: Krekule, J., Seidlová, F. (ed.): Signals in Plant Development. Pp. 145-162. SPB Academic Publishing, The Hague 1989.

    Google Scholar 

  • Kristie, D.N., Jolliffe, P.A.: High-resolution studies of growth oscillations during stem elongation.-Can. J. Bot 64: 2399-2405, 1986.

    Article  Google Scholar 

  • Lecharny, A., Wagner, E.: Stem extention rate in light-grown plants. Evidence for an endogenous circadian rhythm in Chenopodium rubrum L.-Physiol. Plant. 60: 437-443, 1984.

    Article  Google Scholar 

  • McDaniel, C.N., Singer, S.R., Smith, S.M.E.: Developmental states associated with the floral transition.-Dev. Biol. 153: 59-69, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Medford, J.I., Behringer, F.J., Callos, J.D., Feldman, K.A.: Normal and abnormal development in the Arabidopsis vegetative shoot apex.-Plant Cell 4: 631-643, 1992.

    Article  PubMed  Google Scholar 

  • Martinez-Zapater, J.M., Coupland, G., Dean, C., Koornneef, M.: The transition to flowering in Arabidopsis.-In: Meyerowitz, E.M., Somerville, C.R. (ed.). Arabidopsis. Pp. 403-433. Cold Spring Harbor Laboratory Press, Cold Spring Harbor 1994.

    Google Scholar 

  • Martinez-Zapater, J.M., Jarillo, J.A., Couz-Alvarez, M., Roldau, M., Salinas, J.: Arabidopsis late-flowering fve mutants are affected in both vegetative and reproductive development.-Plant J. 7: 543-551, 1995.

    Article  Google Scholar 

  • Müller, A.: Zur Characterisierung der Blüten und Infloreszenzen von Arabidopsis thaliana (L.) Heynh.-Kulturpflanze 9: 364-393, 1961.

    Article  Google Scholar 

  • Phillips, I.D.J.: Apical dominance.-Annu. Rev. Plant Physiol. 26: 341-367, 1975.

    Article  CAS  Google Scholar 

  • Poethig, R.S.: Phase change and the regulation of shoot morphogenesis in plants.-Science 250: 923-930, 1990.

    PubMed  Google Scholar 

  • Ruiz Fernandez, S.J., Wagner, E.: Flowering in Chenopodium rubrum: Light control of stem elongation rate (SER) as a systemic marker of flower induction.-Flowering Newslett. 8: 15-18, 1989.

    Google Scholar 

  • Ruiz Fernandez, S.J., Wagner, E.: A new method of measurement and analysis of the stem extension rate to demonstrate the complete synchronisation of Chenopodium rubrum plants by environmental conditions.-J. Plant Physiol. 144: 362-369, 1994.

    Google Scholar 

  • Shannon, S., Meeks-Wagner, D.R.: A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development.-Plant Cell 3: 877-892, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Smyth, D.R., Bowman, J.L., Meyerovitz, E.M.: Early flower development in Arabidopsis.-Plant Cell 2: 755-767, 1990

    Article  PubMed  CAS  Google Scholar 

  • Telfer, A., Poethig, R.S.: Leaf development in Arabidopsis.-In: Meyerowitz, E.M., Somerville, C.R. (ed.): Arabidopsis. Pp. 379-401. Cold Spring Harbor Laboratory Press, Cold Spring Harbor 1994.

    Google Scholar 

  • Tamas, I.A.: Hormonal regulation of apical dominance.-In: Davies, P.J. (ed.). Plant Hormones. Physiology, Biochemistry and Molecular Biology. Pp. 572-597. Kluwer Academic Publishers, Dordrecht-Boston-London 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jouve, L., Charron, Y., Couderc, C. et al. Dependence of Arabidopsis Thaliana Floral Stem Growth and Architecture on Photoperiod. Biologia Plantarum 41, 377–386 (1998). https://doi.org/10.1023/A:1001894226251

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1001894226251

Navigation