Skip to main content
Log in

Cycles on Arithmetic Surfaces

  • Published:
Compositio Mathematica

Abstract

We develop a localized intersection theory for arithmetic schemes on the model of Fulton's intersection theory. We prove a Lefschetz fixed point formula for arithmetic surfaces, and give an application to a conjecture of Serre on the existence of Artin's representations for regular local rings of dimension 2 and unequal characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artin, M.: Some numerical criteria for contractability of curves on algebraic surfaces, Amer. J. Math. 84 (1962), 485-496.

    Google Scholar 

  2. Artin, M. and Winters, G.: Degenerate fibres and stable reduction of curves, Topology 10 (1971), 373-383.

    Google Scholar 

  3. Bloch, S.: Cycles on arithmetic schemes and Euler characteristics of curves, Proc. Sympos. Pure Math. 46 (1987), 421-450.

    Google Scholar 

  4. Bloch, S.: De Rham cohomology and conductors of curves, Duke Math. J. 54 (1987), 295-308.

    Google Scholar 

  5. Deligne, P.: Cohomologie à support propre et construction du foncteur f !, appendix to Hartshorne, Residues and Duality, Lecture Notes in Math. 20, Springer-Verlag, New York, 1966, pp. 404-421.

    Google Scholar 

  6. Deligne, P. and Katz, N.: Groupes de monodromie en géométrie algébrique, S.G.A. 7 II, Lecture Notes in Math. 340, Springer-Verlag, New York, 1973.

  7. Fulton, W.: Intersection Theory, Springer-Verlag, Berlin, 1984.

    Google Scholar 

  8. Kato, K.: Generalized class field theory, Proc. I.C.M. Kyoto, Japan (1990), 419-428.

  9. Kato, K.: Class field theory, 'D-modules, and ramification on higher dimensional schemes, part I, Amer. J. Math. 116 (1994), 757-784.

    Google Scholar 

  10. Kato, K., Saito, S. and Saito, T.: Artin characters for algebraic surfaces, Amer. J. Math. 110 (1987), 49-76.

    Google Scholar 

  11. Lipman, J.: Rational singularities, Publ. Math. I.H.E.S. 36 (1969), 195-279.

    Google Scholar 

  12. Milne, J.: Étale Cohomology, Princeton Univ. Press, New Jersey, 1980.

    Google Scholar 

  13. Moret-Bailly, L.: Groupes de Picard et problèmes de Skolem I, Ann. Sci. Ecole Norm. Sup. 22 (1989), 161-179.

    Google Scholar 

  14. Mumford, D.: The topology of normal singularities of an algebraic surface and a criterion for simplicity, Publ. Math. I.H.E.S. 9 (1961), 5-22.

    Google Scholar 

  15. Roberts, P.: Local Chern characters and intersection multiplicities, Proc. Sympos. Pure Math. 46 (1987), 389-400.

    Google Scholar 

  16. Saito, T.: Conductor, discriminant, and the Noether formula of an arithmetic surface, Duke Math. J. 57 (1988), 151-173.

    Google Scholar 

  17. Saito, T.: Self-intersection, 0-cycles and coherent sheaves on arithmetic schemes, Duke Math. J. 57 (1988), 555-578.

    Google Scholar 

  18. Serre, J.-P.: Corps locaux, Publ. Inst. Math. Univ. Nancago VIII, Hermann, Paris, 1968.

    Google Scholar 

  19. Serre, J.-P.: Sur la rationalité des représentations d'Artin, Ann. of Math. 72 (1960), 406-420.

    Google Scholar 

  20. Serre, J.-P.: Représentations linéaires des groupes finis, Hermann, Paris, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbes, A. Cycles on Arithmetic Surfaces. Compositio Mathematica 122, 23–111 (2000). https://doi.org/10.1023/A:1001822419774

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1001822419774

Navigation