Skip to main content
Log in

Chilling-induced changes in membrane fluidity and antioxidant enzyme activities in Coffea arabica L. roots

  • Published:
Biologia Plantarum

Abstract

Exposure of coffee to low temperatures caused growth inhibition, changes in metabolic rates, and membrane alterations. Root tissue exposed to 10 °C evolved significantly lower rates of metabolic heat compared with controls grown at 25 °C, and the values were closely associated with the observed root growth inhibition. Electron paramagnetic resonance spectra of intact tissues showed that the spin probe 5-doxylstearic acid was capable to intercalate within the cellular membrane lipids. Indeed, at the depth of the 5th carbon atoms of the alkyl chains, the nitroxide radical detected more rigid membranes in seedlings exposed to 10 °C compared with 25 °C treated samples. Ascorbate peroxidase and catalase activities did not show appreciable changes under chilling conditions, while guaiacol peroxidase activity increased 55 % compared to the control. On the other hand, glutathione reductase activity decreased, in parallel to a significant decline in the capacity to reduce triphenyl-tetrazolium. Our results showed a marked correlation between lipid peroxidation and root tissue damage, which seemed to be associated with increased membrane rigidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alonso, A., Queiroz, C.S., Magalhães, A.C.: Chilling stress leads to increased cell membrane rigidity in roots of coffee (Coffea arabica L.) seedlings.-Biochem. biophys. Acta 1323: 75-84, 1997.

    PubMed  CAS  Google Scholar 

  • Asada, K.: Ascorbate peroxidase -- a hydrogen peroxide-scavenging enzyme in plants.-Physiol. Plant. 85: 235-241, 1992.

    Article  CAS  Google Scholar 

  • Bauer, H., Wierer, R., Hatheway, W.H., Larcher, W.: Photosynthesis of Coffea arabica after chilling.-Physiol. Plant. 64: 449-454, 1985.

    Article  CAS  Google Scholar 

  • Bauer, H., Comploj, A., Bodner, M.: Susceptibility to chilling of some central-African cultivars of Coffea arabica.-Field Crops Res. 24: 119-129, 1990.

    Article  Google Scholar 

  • Bindoli, A.: Lipid peroxidation in mitochondria.-Free Radicals Biol. Med. 5: 247-261, 1988.

    Article  CAS  Google Scholar 

  • Bowler, C., Van Montagu, M.V., Inzé, D.: Superoxide dismutase and stress tolerance.-Annu. Rev. Plant Physiol. Plant mol. Biol. 43: 83-116, 1992.

    Article  CAS  Google Scholar 

  • Bradford, M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.-Anal. Biochem. 72: 255-260, 1976.

    Article  Google Scholar 

  • Bruch, R.C., Thayer, W.S.: Differential effect of lipid peroxidation on membrane fluidity as determined by electron spin resonance probes.-Biochim. biophys. Acta 733: 216-222, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Buege, J.A., Aust, S.D.: Microsomal lipid peroxidation.-Methods Enzymol. 52: 302-310, 1978.

    PubMed  CAS  Google Scholar 

  • Burdon, R.H., Gill, V., Boyd, P.A., O'Kane, D.: Chilling, oxidative stress and antioxidant enzyme responses in Arabidopsis thaliana.-Proc. roy. Soc. Edinburg 102B: 177-185, 1994.

    Google Scholar 

  • Cakmak, I., Strbac, D., Marschner, H.: Activities of hydrogen peroxide-scavenging enzymes in germinating wheat seeds.-J. exp. Bot. 44: 127-132, 1993.

    CAS  Google Scholar 

  • Chen, G.-X., Asada, K.: Hydroxyurea and ρ-aminophenol are the suicide inhibitors of ascorbate peroxidase.-J. biol. Chem. 265: 2775-2781, 1990.

    PubMed  CAS  Google Scholar 

  • Chen, J.J., Yu, B.P.: Alterations in mitochondrial membrane fluidity by lipid peroxidation products.-Free Radicals Biol. Med. 17: 411-418, 1994.

    Article  CAS  Google Scholar 

  • Criddle, R.S., Breidenbach, R.W., Hansen, L.D.: Plant calorimetry: how to quantitatively compare apples and oranges.-Therm. Acta 193: 67-90, 1991.

    Article  CAS  Google Scholar 

  • Davies, K.J.A.: Protein damage and degradation by oxygen radicals. 1. General aspects.-J. biol. Chem. 262: 9895-9901, 1987.

    PubMed  CAS  Google Scholar 

  • Dhindsa, R.S., Plumb-Dhindsa, P., Thorpe, T.A.: Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase.-J. exp. Bot. 32: 93-101, 1981.

    CAS  Google Scholar 

  • Elstner, E.F., Oswald, W.: Mechanisms of oxygen activation during plant stress.-Proc. roy. Soc. Edinburg 102B: 131-154, 1994.

    Google Scholar 

  • Foyer, C.H., Lelandais, M., Kunert, K.J.: Photooxidative stress in plants.-Physiol. Plant. 92: 696-717, 1994.

    Article  CAS  Google Scholar 

  • Gaffney, B.J.: Practical considerations for the calculation of order parameters for fatty acid or phospholipid spin labels in membranes.-In: Berliner, L.J. (ed.): Spin Labelling Theory and Applications. Pp. 567-571. Academic Press, New York 1976.

    Google Scholar 

  • Graham, D., Patterson, B.D.: Responses of plants to low, non freezing temperatures: proteins, metabolism, and acclimation.-Annu. Rev. Plant Physiol. 33: 347-372, 1982.

    Article  CAS  Google Scholar 

  • Grenthe, I., Ots, H., Ginstrup, O.: A calorimetric determination of the enthalpy of protonation of THAM at 5, 20, 25, 35, and 50 °C.-Acta chem. scand. 24: 1067-1080, 1970.

    Article  CAS  Google Scholar 

  • Gutteridge, J.M.C., Halliwell, B.: The measurement and mechanism of lipid peroxidation in biological systems.-Trends biochem. Sci. 15: 129-138, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Haarer, A.E.: Best environment for coffee.-Indian Coffee 27: 289-291, 1963.

    Google Scholar 

  • Harrington, J.F., Kihara, G.M.: Chilling injury of germinating muskmelon and pepper seed.-Proc. amer. Soc. hort. Sci. 75: 485-489, 1960.

    Google Scholar 

  • Levitt, J.: Responses of Plants to Environmental Stresses. Vol. 1.-Academic Press, London 1980.

    Google Scholar 

  • Lovrien, R., Williams, K.K., Ferrey, M.K., Ammend, D.A.: Calorimetric versus growth microbial analysis of cellulase enzymes acting on cellulose.-Appl. environ. Microbiol. 53: 2935-2941, 1989.

    Google Scholar 

  • Mehlhorn, H., Lelandais, M., Korth, H.G., Foyer, C.H.: Ascorbate is the natural substrate for plant peroxidases.-FEBS Lett. 378: 203-206, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Merzlyak, M.N.: Free radical oxidative reactions in lipids of plant membranes.-Free Radicals Biol. Med. 16: 9-10, 1994.

    Article  Google Scholar 

  • Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts.-Plant Cell Physiol. 22: 867-880, 1981.

    CAS  Google Scholar 

  • Patterson, B.D., Kenrik, I.J.R., Raison, J.K.: Lipids of chill-sensitive and resistant Passiflora species: Fatty acid composition and temperature dependence of spin label motion.-Phytochemistry 17: 1089-1092, 1978.

    Article  CAS  Google Scholar 

  • Prasad, T.K., Anderson, M.D., Martin, B.A., Stewart, C.R.: Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide.-Plant Cell 6: 65-74, 1994a.

    Article  PubMed  CAS  Google Scholar 

  • Prasad, T.K., Anderson, M.D., Stewart, C.R.: Acclimation, hydrogen peroxide, and abscisic acid protect mitochondria against irreversible chilling injury in maize seedlings.-Plant Physiol. 105: 619-627, 1994b.

    PubMed  CAS  Google Scholar 

  • Prasad, T.K., Anderson, M.D., Stewart, C.R.: Localization and characterization of peroxidases in the mitochondria of chilling-acclimated maize seedlings.-Plant Physiol. 108: 1597-1605, 1995.

    PubMed  CAS  Google Scholar 

  • Qiu, Q.-S., Liang, H.-B.: Lipid peroxidation caused by the redox system of plasma membranes from wheat roots.-J. Plant Physiol. 145: 261-265, 1995.

    CAS  Google Scholar 

  • Raison, J.K., Lyons, J.M.: Chilling injury: a plea for uniform terminology.-Plant Cell Environ. 9: 685-686, 1986.

    Article  Google Scholar 

  • Rice-Evans, C., Burdon, R.: Free radical-lipid interactions and their pathological consequences.-Progr. Lipid Res. 32: 71-110, 1993.

    Article  CAS  Google Scholar 

  • Saija, A., Scalese, M., Lanza, M., Marzullo, D., Bonina, F., Castelli, F.: Flavonoids as antioxidant agents: importance of their interaction with biomembranes.-Free Radicals Biol. Med. 19: 481-486, 1995.

    Article  CAS  Google Scholar 

  • Smirnoff, N.: The role of active oxygen in the response of plants to water deficit and desiccation.-New Phytol. 125: 27-58, 1993.

    Article  CAS  Google Scholar 

  • Steponkus, P.L., Lanphear, F.O.: Refinement of the triphenyl tetrazolium chloride method of determining cold injury.-Plant Physiol. 42: 1423-1426, 1967.

    Article  PubMed  CAS  Google Scholar 

  • Wadsö, I.: Microcalorimeters.-Quart. Rev. Biophys. 3: 383-427, 1970.

    Article  Google Scholar 

  • Watanabe, H., Kobayashi, A., Yamamoto, T., Suzuki, S., Hayashi, H., Yamazaki, N.: Alterations of human erythrocyte membrane fluidity by oxygen-derived free radicals and calcium.-Free Radicals Biol. Med. 9: 507-514, 1990.

    Article  Google Scholar 

  • Zhang, J., Kirkham, M.B.: Enzymatic responses of the ascorbate-glutathione cycle to drought in sorghum and sunflower plants.-Plant Sci. 113: 139-147, 1996.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Queiroz, C., Alonso, A., Mares-Guia, M. et al. Chilling-induced changes in membrane fluidity and antioxidant enzyme activities in Coffea arabica L. roots. Biologia Plantarum 41, 403–413 (1998). https://doi.org/10.1023/A:1001802528068

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1001802528068

Navigation