Skip to main content

On Average Properties of Inhomogeneous Fluids in General Relativity: Dust Cosmologies

Abstract

For general relativistic spacetimes filled with irrotational ‘dust’ a generalized form of Friedmann's equations for an ‘effective’ expansion factor a D of inhomogeneous cosmologies is derived. Contrary to the standard Friedmann equations, which hold for homogeneous-isotropic cosmologies, the new equations include the ‘backreaction effect’ of inhomogeneities on the average expansion of the model. A universal relation between ‘backreaction’ and average scalar curvature is also given. For cosmologies whose averaged spatial scalar curvature is proportional to a D -2, the expansion law governing a generic domain can be found. However, as the general equations show, ‘backreaction’ acts as to produce average curvature in the course of structure formation, even when starting with space sections that are spatially flat on average.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. 1.

    Arnowitt, R., Deser, S., Misner, C. W. (1962). In Gravitation: an Introduction to Current Research, L. Witten, ed. (Wiley, New York).

  2. 2.

    Buchert, T. (1996). In Mapping, Measuring and Modelling the Universe (València 1995), P. Coles, V. J. Martínez, M. J. Pons–Bordería, eds.(ASP Conference Series), 349–356.

  3. 3.

    Buchert, T. (1997). In 2nd SFB Workshop on Astro-particle Physics, Report SFB/P002, Ringberg (Tegernsee) 1996, R. Bender, T. Buchert, P. Schneider, F. von Feilitzsch, eds.(T echnical University of Munich, Munich), p. 71-82.

    Google Scholar 

  4. 4.

    Buchert, T., Ehlers, J. (1997). Astron. Astrophys. 320, 1.

    Google Scholar 

  5. 5.

    Buchert, T., Kerscher, M., Sicka, C. (1999). Preprint.

  6. 6.

    Carfora, M., Piotrkowska, K. (1995). Phys. Rev. D 52, 4393.

    Google Scholar 

  7. 7.

    Ellis, G. F. R.(1984). In General Relativity and Gravitation 10, B. Bertotti, F. de Felice and A. Pascolini, eds.(Reidel, Dordrecht), 215–288.

    Google Scholar 

  8. 8.

    Kasai, M. (1995). Phys. Rev. D 52, 5605.

    Google Scholar 

  9. 9.

    Kofman, L., Pogosyan, D. (1995). Astrophys. J. 442, 30.

    Google Scholar 

  10. 10.

    Maartens, R., Ellis G. F. R., Stoeger W. R. (1995). Phys. Rev. D 51, 5942.

    Google Scholar 

  11. 11.

    Matarrese, S. (1996). In Proc. Int. School of Physics “Enrico Fermi,” CXXXII -- Dark Matter in the Universe (Varenna 1995), S. Bonometto, J. Primack, A. Provenzale, eds. (IOS Press, Amsterdam), 601-628.

    Google Scholar 

  12. 12.

    Matarrese, S., Terranova, D. (1996). Mon. Not. R. Astron. Soc. 283, 400.

    Google Scholar 

  13. 13.

    Peebles, P. J. E.(1980). The Large Scale Structure of the Universe (Princeton University Press, Princeton, NJ).

    Google Scholar 

  14. 14.

    Russ, H., Morita, M., Kasai, M., Börner, G.(1996). Phys. Rev. D 53, 6881.

    Google Scholar 

  15. 15.

    Russ, H., Soffel, M. H., Kasai, M., Börner, G.(1997). Phys. Rev. D 56, 2044.

    Google Scholar 

  16. 16.

    Stoeger, W. R., Helmi, A., Torres, D. F. (1999). Preprint gr-qc/9904020.

  17. 17.

    Takada M., Futamase T. (1999). Gen. Rel. Grav. 31, 461.

    Google Scholar 

  18. 18.

    Wainwright, J., Ellis, G. F. R.(1997). Dynamical Systems in Cosmology (Cambridge University Press, Cambridge).

    Google Scholar 

  19. 19.

    Wertz, J. R. (1971). Astrophys. J. 164, 227.

    Google Scholar 

  20. 20.

    Yodzis, P. (1974). Proc. Royal IrishA cad. 74A, 61.

    Google Scholar 

  21. 21.

    York, J. W., Jr. (1979). In Sources of Gravitational Radiation, L. Smarr, ed.(Cambridge University Press, Cambridge), p. 83.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Buchert, T. On Average Properties of Inhomogeneous Fluids in General Relativity: Dust Cosmologies. General Relativity and Gravitation 32, 105–125 (2000). https://doi.org/10.1023/A:1001800617177

Download citation

  • Irrotational dust model