Advertisement

Antonie van Leeuwenhoek

, Volume 74, Issue 1–3, pp 133–153 | Cite as

Applied aspects of Rhodococcus genetics

  • Michael J. Larkin
  • René De Mot
  • Leonid A. Kulakov
  • István Nagy
Article

Abstract

Eubacteria of the genus Rhodococcus are a diverse group of microorganisms commonly found in many environmental niches from soils to seawaters and as plant and animal pathogens. They exhibit a remarkable ability to degrade many organic compounds and their economic importance is becoming increasingly apparent. Although their genetic organisation is still far from understood, there have been many advances in recent years. Reviewed here is the current knowledge of rhodococci relating to gene transfer, recombination, plasmid replication and functions, cloning vectors and reporter genes, gene expression and its control, bacteriophages, insertion sequences and genomic rearrangements. Further fundamental studies of Rhodococcus genetics and the application of genetic techniques to the these bacteria will be needed for their continued biotechnological exploitation.

Rhodococcus genetics plasmids cloning vectors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams JN (1964) Recombination between Nocardia erythropolis and canicruria. J. Bacteriol. 88: 865–876Google Scholar
  2. Adams JN & Bradley SG (1963) Recombination events in the bacterial genus Nocardia. Science 140: 1392–1394Google Scholar
  3. Adams JN & Brownell GH (1976) Genetic studies in Nocardia erythropolis. In: Goodfellow M, Brownell GH & Serrano JA (Eds) The Biology of the Nocardiae (pp 285–309). Academic Press, LondonGoogle Scholar
  4. Allen CCR, Boyd DR, Larkin MJ, Reid KA, Sharma ND & Wilson K (1997) Metabolism of naphthalene, 1-naphthol, indene, and indole by Rhodococcus sp strain N CIMB 12038. Appl. Environ. Microbiol. 63: 151–155Google Scholar
  5. Andersen SJ, Quan S, Gowan B & Dabbs ER (1997) Monooxygenase-like sequence of a Rhodococcus equi gene conferring increased resistance to rifampin by inactivating this antibiotic. Antimicrob. Agents Chemother. 41: 218–221Google Scholar
  6. Archer JAC & Griffiths H (1995) Linear plasmids in Rhodococcus corallina V49. J. Cell. Biochem. NoS21A p45 abstractGoogle Scholar
  7. Assaf NA & Dick WA (1993) Spheroplast formation and plasmid isolation from Rhodococcus spp. Biotechniques 15: 1010–1015Google Scholar
  8. Asturias JA & Timmis KN (1993) Three different 2,3-dihydroxybiphenyl-1,2-dioxygenase genes in the Gram-positive polychlorobiphenyl-degrading bacterium Rhodococcus globerulus P6. J. Bacteriol. 175: 4631–4640Google Scholar
  9. Asturias JA, Eltis LD, Prucha M & Timmis KN (1994a) Analysis of 3,2,3-dihydroxybiphenyl 1,2-dioxygenases found in Rhodococcus globerulus P6 — identification of a new family of extradiol dioxygenases. J. Biol. Chem. 269: 7807–7815Google Scholar
  10. Asturias JA, Moore E, Yakimov MM, Klatte S & Timmis KN (1994b) Reclassification of the polychlorinated biphenyldegraders Acinetobacter sp. strain P6 and Corynebacterium sp. strain MB1 as Rhodococcus globerulus. Syst. Appl. Microbiol. 17: 226–231Google Scholar
  11. Asturias JA, D & #x00ED;az E & Timmis KN (1995) The evolutionary relationship of biphenyl dioxygenase from Gram-positive Rhodococcus globerulus P6 to multicomponent dioxygenases from Gram-negative bacteria. Gene 156: 11–18Google Scholar
  12. Baltz RH & Hosted TH (1996) Molecular genetic methods for improving secondary-metabolite production in actinomycetes. Trends Biotechnol. 14: 245–250Google Scholar
  13. Bardarov S, Kriakov J, Carrierre C, Yu S, Vaamonde C, McAdam RA, Bloom BR, Hatfull GF & Jacobs Jr WR (1997) Conditionally replicating mycobacteriophages: a system for transposon delivery to Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 94: 10961–10966Google Scholar
  14. Baril C, Richaud C, Baranton g & Saint Girons IS (1989) Linear chromosome of Borrelia burgdorferi. Res. Microbiol. 140: 507–516Google Scholar
  15. Barnes MR, Duetz WA & Williams PA (1997) A 3-(3-hydroxyphenyl)propionic acid catabolic pathway in Rhodococcus globerulus PWD1: cloning and characterization of the hpp operon. J. Bacteriol. 179: 6145–6153Google Scholar
  16. Bashyam MD, Kaushal D, Dasgupta SK & Tyagi AK (1996) A study of the mycobacterial transcriptional apparatus: identification of novel features in promoter elements. J. Bacteriol. 178: 4847–4853Google Scholar
  17. Behki RM (1991) Di-allate degradation by an EPTC-degrading Rhodococcus, and in eptc-treated soil. Soil Biol. Biochem. 23: 789–793Google Scholar
  18. Behki R, Topp E, Dick W & Germon P (1993) Metabolism of the herbicide atrazine by Rhodococcus strains. Appl. Environ. Microbiol. 59: 1955–1959Google Scholar
  19. Behki RM, Topp EE & Blackwell BA (1994) Ring hydroxylation of N-methylcarbamate insecticides by Rhodococcus TE1. J. Agric. Fd. Chem. 42: 1375–1378Google Scholar
  20. Bigey F, Grossiord B, Chan Kwo Chion CKN, Arnaud A & Galzy P (1995) Brevibacterium linens pBL33 and Rhodococcus rhodochrous pRC1 cryptic plasmids replicate in Rhodococcus sp. R312 (formerly Brevibacterium sp. R312) Gene 154: 77-79Google Scholar
  21. Blake JA, Ganguly N & Sherratt DJ (1997) DNA sequence of recombinase-binding sites can determine Xer site-specific recombination outcome. Mol. Microbiol. 23: 387–398Google Scholar
  22. Blakey GW, Davidson AO & Sherratt DJ (1997) Binding and cleaving of nicked substrates by site-specific recombinases XerC and XerD. J. Mol. Biol. 265: 30–39Google Scholar
  23. Bourn WR & Babb B (1995) Computer assisted identification and classification of streptomycete promoters. Nucleic Acids Res. 23: 3696–3703Google Scholar
  24. Briglia M, Eggen RIL, van Elsas D & de Vos WM (1994) Phylogenetic evidence for transfer of pentachlorophenol-mineralizing Rhodococcus chlorophenolicus PCP-IT to the genus Mycobacterium. Int. J. Syst. Bacteriol. 44: 494–498Google Scholar
  25. Brownell GH (1974) A new nocardial mating strain. Am. Soc. Microbiol. Abstract p 41Google Scholar
  26. Brownell GH & Adams JN (1968) Linkage and segregation of a mating type specific phage and resistance chararacters in nocardial recombinants. Genetics 60: 437–448Google Scholar
  27. Brownell GH & Denniston K (1984) Genetics of the nocardioform bacteria. In: Goodfellow M, Mordarski M & Williams ST (Eds) The Biology of the Actinomycetes, (pp 201–208). Academic Press, New YorkGoogle Scholar
  28. Brownell GH & Kelly KL (1969) Inheritance of mating type factors in nocardial recombinants. J. Bacteriol. 99: 25–36Google Scholar
  29. Brownell GH, Adams JN & Bradley SG (1967) Growth and characterisation of nocardiophages for Nocardia canicruria and Nocardia erythropolis mating types. J. Gen. Microbiol. 47: 247–256Google Scholar
  30. Brownell GH, Enquist LW & Denniston-Thompson K (1980) An analysis of the genome of the actinophage ?EC. Gene 12: 311–314Google Scholar
  31. Brownell GH, Saba JA, Denniston-Thompson K & Enquist LW (1982) The development of a Rhodococcus-actinophage cloning system. Dev. Ind. Microbiol. 23: 287–298Google Scholar
  32. Brunhuber NM, Banerjee A, Jacobs WR Jr. & Blanchard JS (1994) Cloning, sequencing, and expression of Rhodococcus l-phenylalanine dehydrogenase. Sequence comparisons to amino acid dehydrogenases. J. Biol. Chem. 269: 16203–16211Google Scholar
  33. Candidus S, VanPee KH & Lingens F (1994) The catechol 2,3-dioxygenase gene of Rhodococcus rhodochrous CTM — nucleotide sequence, comparison with isofunctional dioxygenases and evidence for an active-site histidine. Microbiology 140: 321–330Google Scholar
  34. Chan Kwo Chion CKN, Duran R, Arnaud A & Galzy P (1991a) Cloning vectors and antibiotic-resistance markers for Brevibacterium sp. R312. Gene 105: 119–124Google Scholar
  35. Chan Kwo Chion CKN, Duran R, Arnaud A & Galzy P (1991b) Electrotransformation of whole cells of Brevibacterium sp. R312, a nitrile hydratase producing strain: construction of a cloning vector. FEMS Microbiol. Lett. 81: 177–187Google Scholar
  36. Chen CW (1996) Complications and implications of linear bacterial chromosomes. Trends Genet. 12: 192–196Google Scholar
  37. Clark JE & Brownell GH (1972) Genophore homologies among compatible nocardiae. J. Bacteriol. 109: 720–729Google Scholar
  38. Crespi M, Messens E, Caplan AB, Vanmontagu M & Desomer J (1992) Fasciation induction by the phytopathogen Rhodococcus fascians depends upon a linear plasmid encoding a cytokinin synthase gene. EMBO Journal 11: 795–804Google Scholar
  39. Crespi M, Vereecke D, Temmerman W, Vanmontagu M & Desomer J (1994) The fas operon of Rhodococcus fascians encodes new genes required for efficient fasciation of host plants. J. Bacteriol. 176: 2492–2501Google Scholar
  40. Crockett JK & Brownell GH (1972) Isolation and characterisation of a lysogenic strain of Nocardia erythropolis. J. Gen. Virol. 10: 737–742Google Scholar
  41. Curragh H, Flynn O, Larkin MJ, Stafford TM, Hamilton JTG & Harper DB (1994) Haloalkane degradation and assimilation by Rhodococcus rhodochrous NCIMB13064. Microbiology 140: 1433–1442Google Scholar
  42. Dabbs ER (1987) A generalized transducing bacteriophage for Rhodococcus erythropolis. Mol. Gen Genet. 206: 116–120Google Scholar
  43. Dabbs ER (1998) Cloning of genes that have environmental and clinical importance from rhodococci and related bacteria. Antonie van Leeuwenhoek 74: 155–168Google Scholar
  44. Dabbs ER & Sole GJ (1988) Plasmid-borne resistance to arsenate, arsenite, cadmium and chloramphenicol in a Rhodococcus species. Mol. Gen. Genet. 211: 148–154Google Scholar
  45. Dabbs ER, Gowan B & Andersen SJ (1990) Nocardioform arsenic resistance plasmids and construction of Rhodococcus cloning vectors. Plasmid 23: 242–247Google Scholar
  46. Dabbs ER, Gowan B, Quan S & Andersen SJ (1995) Development of improved Rhodococcus plasmid vectors and their use in cloning genes of potential commercial and medical importance. Biotechnologia 7–8: 129–135Google Scholar
  47. Dabrock B, Kesseler M, Averhoff B & Gottschalk G (1994) Identification and characterization of a transmissible linear plasmid from Rhodococcus erythropolis BD2 that encodes isopropylbenzene and trichloroethene catabolism. Appl. Environ. Microbiol. 60: 853–860Google Scholar
  48. de la Pena-Moctezuma A & Prescott JF (1995) A physical map of the 85 kb virulence plasmid of Rhodococcus equi 103. Can. J. Vet. Res. 59: 229–231Google Scholar
  49. De Mot R, Nagy I, Schoofs G & Vanderleyden J (1994a) Sequences of the cobalamin biosynthetic genes cobK, cobL, and cobM from Rhodococcus sp. NI86/21. Gene 143: 91–93Google Scholar
  50. De Mot R, Nagy I, Schoofs G & Vanderleyden J (1994b) Sequence of a Rhodococcus gene cluster encoding the subunits of ethanolamine ammonia-lyase and an APC-like permease. Can. J. Microbiol. 40: 403–407Google Scholar
  51. De Mot R, Nagy I, De Schrijver A, Pattanapipitpaisal P, Schoofs G & Vanderleyden J (1997). Structural analysis of the 6 kb cryptic plasmid pFAJ2600 from Rhodococcus erythropolis NI86/21 and construction of Escherichia coli–Rhodococcus shuttle vectors. Microbiology 143: 3137–3147Google Scholar
  52. Denis-Larose C, Labbe D, Bergeron H, Jones AM, Greer CW, Alhawari J, Grossman MJ, Sankey BM & Lau PCK (1997) Conservation of plasmid-encoded dibenzothiophene desulfurisation genes in several rhodococci. Appl. Environ. Microbiol. 63: 2915–2919Google Scholar
  53. Denome SA & Young KD (1995) Identification and activity of two insertion-sequence elements in Rhodococcus sp strain IGTS8. Gene 161: 33–38Google Scholar
  54. Denome SA, Olson ES & Young KD (1993) Identification and cloning of genes involved in specific desulfurization of dibenzothiophene by Rhodococcus sp strain IGTS8. Appl. Environ. Microbiol. 59: 2837–2843Google Scholar
  55. Denome SA, Oldfield C, Nash LJ & Young KD (1994) Characterization of the desulfurization genes from Rhodococcus sp. strain IGTS8. J. Bacteriol. 176: 6707–6716Google Scholar
  56. De Schrijver A, Nagy I, Schoofs G, Proost P, Vanderleyden J, van P & #x00E9;e K-H & De Mot R (1997) The thiocarbamate herbicide-inducible nonheme chloroperoxidase of Rhodococcus erythropolis NI86/21. Appl. Environ. Microbiol. 634: 1911–1916Google Scholar
  57. Desomer J, Dhaese P & Van Montagu M (1988) Conjugative transfer of cadmium resistance plasmids in Rhodococcus fascians strains. J. Bacteriol. 170: 2401–2405Google Scholar
  58. Desomer J, Dhaese P & Van Montagu M (1990) Transformation of Rhodococcus fascians by high-voltage electroporation and development of R. fascians cloning vectors. Appl. Environ. Microbiol. 56: 2818–2825Google Scholar
  59. Desomer J, Crespi M & Vanmontagu M (1991) Illegitimate integration of non-replicative vectors in the genome of Rhodococcus fascians upon electrotransformation as an insertional mutagenesis system. Mol. Microbiol. 5: 2115–2124Google Scholar
  60. Desomer J, Vereecke D, Crespi M & Van Montagu M (1992) The plasmid-encoded chloramphenicol-resistance protein of Rhodococcus fascians is homologous to the transmembrane efflux proteins. Mol. Microbiol. 6: 2377–2385Google Scholar
  61. Dhandayuthapani S, Via LE, Thomas CA, Horowitz PM & Deretic D (1995). Green fluorescent protein as a marker for gene expression and cell biology of mycobacterial interactions with macrophages. Mol. Microbiol. 17: 901–912Google Scholar
  62. Eltis LD & Bolin JT (1996) Evolutionary relationship among extradiol dioxygenases. J. Bacteriol. 178: 5930–5937Google Scholar
  63. Eulberg D, Golovleva LA & Schlomann M (1997) Characterisation of catechol catabolic genes from Rhodococcus erythropolis 1CP. J. Bacteriol. 179: 370–381Google Scholar
  64. Ferdows MS & Barbour AG (1989) Megabase-sized linear DNA in the bacterium Borrelia burgdorferi, the Lyme disease agent. Proc. Natl. Acad. Sci. USA 86: 5969–5973Google Scholar
  65. Finnerty WR (1992) The biology and genetics of the genus Rhodococcus. Ann. Rev. Microbiol. 46: 193–218Google Scholar
  66. Gallardo ME, Ferr & #x00E1;ndez A, de Lorenzo V, Garc & #x00ED;a JL & D & #x00ED;az E (1997) Designing recombinant Pseudomonas strains to enhance biodesulfurization. J. Bacteriol. 179: 7156–7160Google Scholar
  67. Gallegos M-T, Schleif R, Bairoch A, Hofmann K & Ramos J (1997) AraC/XylS family of transcriptional regulators. Microbiol. Mol. Biol. Rev. 61: 393–410Google Scholar
  68. Gonzalez-y-Merchand JA, Colston MJ & Cox RA (1996) The rRNA operons of Mycobacterium smegmatis and Mycobacterium tuberculosis: comparison of promoter elements and of neighbouring upstream genes. Microbiology 142: 667–674Google Scholar
  69. Goodfellow M, Alderson G & Chun I (1998) Rhodococcal systematics: problems and developments. Antonie van Leeuwenhoek 74: 3–20Google Scholar
  70. Goodfellow M (1989) Suprageneric classification of actinomycetes. In: Williams ST, Sharpe ME & Holt JG (Eds) Bergey & #x2019;s Manual of Systematic Bacteriology, Vol 4 (pp 2333–2339). Williams and Wilkins, BaltimoreGoogle Scholar
  71. Gowan B & Dabbs ER (1994) Identification of DNA involved in Rhodococcus chromosomal conjugation and self-incompatibility. FEMS Microbiol. Lett. 115: 45–50Google Scholar
  72. Green EP, Tizard ML, Moss MT, Thompson J, Winterbourne DJ, McFadden JJ & Hermon-Taylor J (1989) Sequence and characteristics of IS900, an insertion element identified in human Crohn & #x2019;s disease isolate of Mycobacterium paratuberculosis. Nucleic Acids Res. 17: 9063–9073Google Scholar
  73. Grzeszik C, L & #x00FC;bbers M, Reh M & Schlegel HG (1997) Genes encoding the NAD-reducing hydrogenase of Rhodococcus opacus MR11. Microbiology 143: 1271–1286Google Scholar
  74. Guilhot C, Otal I, Van Rompaey I, Martìn C & Gicquel B (1994) Efficient transposition in mycobacteria: construction of Mycobacterium smegmatis insertional mutant libraries. J. Bacteriol. 176: 535–539Google Scholar
  75. Haas D, Berger B, Schmid S, Seitz T & Reimmann C (1996) Insertion sequence IS21: related insertion sequence elements, transpositional mechanisms, and application to linker insertion mutagenesis. In Nakazawa T, Furukawa K, Haas D & Silver S (Eds) Molecular Biology of Pseudomonads (pp 238–249). ASM Press, Washington DC.Google Scholar
  76. H & #x00E4;ggblom Mm, Nohynek LJ, Palleroni NJ, Kronqvist K, Nurmiaho-Lassila E-L, Salkinoja-Salonen MS, Klatte S & Kroppenstedt RM (1994) Transfer of polychlorophenol-degrading Rhodococcus chlorophenolicus (Apajalahti et al. 1986) to the genus Mycobacterium as Mycobacterium chlorophenolicum comb. nov. Int. J. Syst. Bacteriol. 44: 485–493Google Scholar
  77. Hall RM 1997. Mobile gene cassettes and integrons: moving antibiotic resistance genes in gram-negative bacteria. Ciba Found. Symp. 207: 192–202Google Scholar
  78. Hall RM, Brown HJ, Brookes DE & Stokes HW (1994) Integrons found in different locations have identical 50-ends but variable 30 ends. J. Bacteriol. 176: 6286–6294Google Scholar
  79. Hashimoto Y, Nishiyama M, Ikehata O, Horinouchi S & Beppu T (1991) Cloning and characterization of an amidase gene from Rhodococcus species N-774 and its expression in Escherichia coli. Biochim. Biophys. Acta 1088: 225–233Google Scholar
  80. Hashimoto Y, Nishiyama M, Yu F, Watanabe I, Horinouchi S & Beppu T (1992) Development of a host-vector system in a Rhodococcus strain and its use for expression of the cloned nitrile hydratase gene cluster. J. Gen. Microbiol. 138: 1003–1010Google Scholar
  81. Hayakawa T, Tanaka, T, Sakaguchi K, Otake N & Yonehara H (1979) A linear plasmid-like DNA in Streptomyces sp. producing lankacidin group antibiotics. J. Gen. Appl. Microbiol. 25: 255–260Google Scholar
  82. Heiss GS, Gowan B & Dabbs ER (1992) Cloning of DNA from a Rhodococcus strain conferring the ability to decolorize sulfonated azo dyes. FEMS Microbiol. Lett. 99: 221–226Google Scholar
  83. Hinnebusch J & Tilly K (1993) Linear plasmids and chromosomes in bacteria. Mol. Microbiol. 10: 917–922Google Scholar
  84. Hiraga S-I, Sugiyama T & Itoh T (1994) Comparative analysis of the replicon region of eleven ColE2-related plasmids. J. Bacteriol. 176: 7233–7243Google Scholar
  85. Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ, Kieser HM, Lydiate DJ, Smith CP, Ward JM & Schrempf H (1985) Genetic Manipulation of Streptomyces: A Laboratory Manual. John Innes, Norwich, UKGoogle Scholar
  86. Hopwood DA, Bibb MJ, Chater KF, Janssen GR, Malpartida F & Smith P (1986) In Booth JR & Higgins CF (Eds) Regulation of Gene Expression. 25 Years on (pp 251–276). Symp. Soc. Gen. Microbiol., University of Cambridge Press, Cambridge, UKGoogle Scholar
  87. Izsvak Z, Jobbagy Z, Takacs I & Duda E (1997) Cloning and characterization of the genes of the CeqI restriction-modification system. Int. J. Biochem. Cell Biol. 29: 895–900Google Scholar
  88. Izu H, Izumi Y, Kurome Y, Sano M, Kondo A, Kato I & Ito M (1997) Molecular cloning, expression, and sequence analysis of the endoglycoceramidase II gene from Rhodococcus species strain M777. J. Biol. Chem. 72: 19846–19850Google Scholar
  89. J & #x00E4;ger W, Sch & #x00E4;fer A, P & #x00FC;hler A, Labes g & Wohlleben W (1992) Expression of the Bacillus subtilis sacB gene leads to sucrose sensitivity in the gram-positive bacterium Corynebacterium glutamicum but not in Streptomyces lividans. J. Bacteriol. 174: 5462–5465Google Scholar
  90. J & #x00E4;ger W, Sch & #x00E4;fer A, Kalinowski J & P & #x00FC;hler A (1995) Isolation of insertion elements from Gram-positive Brevibacterium, Corynebacterium and Rhodococcus strains using the Bacillus subtilis sacB gene as a positive selection marker. FEMS Microbiol. Lett. 126: 1–6Google Scholar
  91. Kalkus J, Dorrie C, Fischer D, Reh M & Schlegel H G (1993) The giant linear plasmid pHG207 from Rhodococcus sp. encoding hydrogen autotrophy — characterization of the plasmid and its termini. J. Gen. Microbiol. 139: 2055–2065Google Scholar
  92. Kasweck KL & Little ML (1982) Genetic recombination in Nocardia asteroides. J. Bacteriol. 149: 403–406Google Scholar
  93. Kesseler M, Dabbs E R, Averhoff B & Gottschalk G (1996) Studies on the isopropylbenzene 2,3-dioxygenase and the 3-isopropylcatechol 2,3-dioxygenase genes encoded by the linear plasmid of Rhodococcus erythropolis BD2. Microbiology 142: 3241–3251Google Scholar
  94. Kholodii GY, Mindlin SZ, Bass IA, Yurieva OV, Minakhina SV & Nikiforov VG (1995) Four genes, two ends, and a res region are involved in transposition of Tn5053: a paradigm for a novel family of transposons carrying either a mer operon or an integron. Mol. Microbiol. 17: 1189–1200Google Scholar
  95. Kobayashi M, Nishiyama M, Nagasawa T, Horinouchi S, Beppu T & Yamada H (1991) Cloning, nucleotide sequence and expression in Escherichia coli of two cobalt-containing nitrile hydratase genes from Rhodococcus rhodochrous J1. Biochim. Biophys. Acta 1129: 23–33Google Scholar
  96. Kobayashi M, Komeda M, Yanaka N, Nagasawa T & Yamada H (1992a) Nitrilase from Rhodococcus rhodochrous J1. Sequencing and overexpression of the gene and identification of an essential cysteine residue. J. Biol. Chem. 267: 20746–20751Google Scholar
  97. Kobayashi M, Yanaka N, Nagasawa T & Yamada H (1992b) Primary structure of an aliphatic nitrile-degrading enzyme, aliphatic nitrilase, from Rhodococcus rhodochrous K22 and expression of its gene and identification of its active site residue. Biochemistry 31: 9000–9007Google Scholar
  98. Kobayashi M, Komeda H, Nagasawa T, Nishiyama M, Horinouchi S, Beppu T, Yamada H & Shimizu S (1993) Amidase coupled with low-molecular-mass nitrile hydratase from Rhodococcus rhodochrous J1. Sequencing and expression of the gene and purification and characterization of the gene product. Eur. J. Biochem. 217: 327–336Google Scholar
  99. Kobayashi M, Komeda H, Shimizu S, Yamada H & Beppu T (1997) Characterization and distribution of IS1164 that exists in the high molecular mass nitrile hydratase gene cluster of the industrial microbe Rhodococcus rhodochrous J1. Proc. Jpn. Acad. 73B: 104–108Google Scholar
  100. Kolst & #x00F8; AB (1997) Dynamic bacterial genome organization. Mol. Microbiol. 24: 241–248Google Scholar
  101. Komeda H, Kobayashi M & Shimizu S (1996a) A novel gene-cluster including the Rhodococcus rhodochrous J1 nhlBA genes encoding a low-molecular-mass nitrile hydratase (l-nhase) induced by its reaction product. J. Biol. Chem. 271: 15796–15802Google Scholar
  102. Komeda H, Kobayashi M & Shimizu S (1996b) Characterization of the gene cluster of high molecular mass nitrile hydratase (L-NHase) induced by its reaction product in Rhodococcus rhodochrous J1. Proc. Natl. Acad. Sci. USA 93: 4267–4272Google Scholar
  103. Komeda H, Hori Y, Kobayashi M & Shimizu S (1996c) Transcriptional regulation of the Rhodococcus rhodochrous J1 nitA gene encoding a nitrilase. Proc. Natl. Acad. Sci. USA 93: 10572–10577Google Scholar
  104. Komeda H, Kobayashi M & Shimizu S (1997) A novel transporter involved in cobalt uptake. Proc. Natl. Acad. Sci. USA 94: 36–41Google Scholar
  105. Kosono S, Maeda M, Fuji F, Arai H & Kudo T (1997) Three of the seven bphC genes of Rhodococcus erythropolis TA421, isolated from a termite ecosystem, are located on an indigenous plasmid associated with biphenyl degradation. Appl. Environ. Microbiol. 63: 3282–3285Google Scholar
  106. Kremer L, Baulard A, Estaquier J, Poulain-Godefroy O & Locht C (1995) Green fluorescent protein as a new expression marker in mycobacteria. Mol. Microbiol. 17: 913–922Google Scholar
  107. Kulakova AN, Stafford TM, Larkin MJ & Kulakov LA (1995) Plasmid pRTL1 controlling 1-chloroalkane degradation by Rhodococcus rhodochrous NCIMB 13064. Plasmid 33: 208–217Google Scholar
  108. Kulakova AN, Reid KA, Larkin MJ, Allen CCR & Kulakov LA (1996) Isolation of Rhodococcus rhodochrous NCIMB13064 derivatives with new biodegradative abilities. FEMS Microbiol. Lett. 145: 227–231Google Scholar
  109. Kulakova AN, Larkin MJ & Kulakov LA (1997) The plasmidlocated haloalkane dehalogenase gene from Rhodococcus rhodochrous NCIMB 13064. Microbiology 143: 109–115Google Scholar
  110. Kulakov LA, Larkin MJ & Kulakova AN (1997) Cryptic plasmid pKA22 isolated from the naphthalene degrading derivative of Rhodococcus rhodochrous NCIMB13064. Plasmid 38: 61–69Google Scholar
  111. Kulakov LA, Delcroix VA, Larkin MJ, Ksenzenko VN & Kulakova AN (1998) Cloning of new Rhodococcus extradiol dioxygenase genes and study of their distribution in different Rhodococcus strains. Microbiology 144: 955–963Google Scholar
  112. Labb & #x00E9; D, Garnon J & Lau PCK (1997) Characterization of the genes encoding a receptor-like histidine kinase and a cognate response regulator from a biphenyl/polychlorobiphenyl-degrading bacterium, Rhodococcus sp. strain M5. J. Bacteriol. 179: 2772–2776Google Scholar
  113. Lefebvre G, Martin N, Kilbertus G & Gay R (1978) Studies on the morphogenesis of nocardioform organisms related to the & #x2018;rhodochrous & #x2019; taxon in synchronous cultures. J. Gen. Microbiol. 108: 125–131Google Scholar
  114. Lei B & Tu S-C (1996) Gene expression, purification, and identification of a desulfurization enzyme from Rhodococcus sp. strain IGTS8 as a sulfide/sulfoxide monooxygenase. J. Bacteriol. 178: 5699–5705Google Scholar
  115. Leskiw BK, Mevarech M, Barritt LS, Jensen SE, Henderson DJ, Hopwood DA, Bruton CJ & Chater KF (1990) Discovery of an insertion sequence, IS116, from Streptomyces clavuligerus and its relatedness to other transposable elements from actinomycetes. J. Gen. Microbiol. 136: 1251–1258Google Scholar
  116. Li MZ, Squires CH, Monticello DJ & Childs JD (1996) Genetic analysis of the dsz promoter and associated regulatory regions of Rhodococcus erythropolis IGTS8. J. Bacteriol. 178: 6409–6418Google Scholar
  117. Locci R & Sharples GP (1984) Morphology. In: Goodfellow M, Mordarski M & Williams ST (Eds) The Biology of the Actinomycetes (pp 165–199) Academic Press, New YorkGoogle Scholar
  118. Lupas A, Z & #x00FC;hl F, Tamura T, Wolf S, Nagy I, De Mot R & Baumeister W (1997) Eubacterial proteasomes. Mol. Biol. Rep. 24: 125–131Google Scholar
  119. Masai E, Yamada A, Healey JM, Hatta T, Kimbara K, Fukuda M & Yano K (1995) Characterisation of biphenyl catabolic genes of Gram-positive polychlorinated biphenyl degrader Rhodococcus sp strain RHA1. Appl. Environ. Microbiol. 61: 2079–2085Google Scholar
  120. Masai E, Sugiyama K, Iwashita N, Shimizu S, Hauschild J E, Hatta T, Kimbara K, Yano K & Fukuda M (1997) The bphDEF metacleavage pathway genes involved in biphenyl/polychlorinated biphenyl degradation are located on a linear plasmid and separated from the initial bphABC genes in Rhodococcus sp. strain RHA1. Gene 187: 141–149Google Scholar
  121. Mayaux JF, Cerbelaud E, Soubrier F, Yeh P, Blanche F & Petre D (1991) Purification, cloning, and primary structure of a new enantiomer-selective amidase from a Rhodococcus strain — structural evidence for a conserved genetic coupling with nitrile hydratase. J. Bacteriol. 173: 6694–6704Google Scholar
  122. McKay DB, Seeger M, Zielinski M, Hofer B & Timmis KN (1997) Heterologous expression of biphenyl dioxygenase-encoding genes from a gram-positive broad-spectrum polychlorinated biphenyl degrader and characterization of chlorobiphenyl oxidation by the gene products. J. Bacteriol. 179: 1924–1930Google Scholar
  123. Meinhardt F, Schaffrath R & Larsen M (1997) Microbial linear plasmids. Appl. Microbiol. Biotech. 47: 329–336Google Scholar
  124. Motallebi-Veshareh M, Rouch DA & Thomas CM (1990) A family of ATPases involved in active partitioning of diverse bacterial plasmids. Mol. Microbiol. 4: 1455–1463Google Scholar
  125. Nagy I, Compernolle F, Ghys K, Vanderleyden J & De Mot R (1995a) A single cytochrome P-450 system is involved in degradation of the herbicides EPTC (S-ethyl dipropylthiocarbamate) and atrazine by Rhodococcus sp. NI86/21. Appl. Environ. Microbiol. 61: 2056–2060Google Scholar
  126. Nagy I, Schoofs G, Compernolle F, Proost P, Vanderleyden J & De Mot R (1995b) Degradation of the thiocarbamate herbicide EPTC (S-ethyl dipropylcarbamothioate) and biosafening by Rhodococcus sp. NI86/21 involve an inducible cytochrome P-450 system and aldehyde dehydrogenase. J. Bacteriol. 177: 676–687Google Scholar
  127. Nagy I, Schoofs G, De Schrijver A, Vanderleyden J & De Mot R (1997a) New method for RNA isolation from actinomycetes: application to the transcriptional analysis of the alcohol oxidoreductase gene thcE in Rhodococcus and Mycobacterium. Lett. Appl. Microbiol. 25: 75–79Google Scholar
  128. Nagy I, Schoofs G, Vanderleyden J & De Mot R (1997b) Transposition of the IS21-related element IS1415 in Rhodococcus erythropolis. J. Bacteriol. 179: 4635–4638Google Scholar
  129. Nagy I, Schoofs G, Vanderleyden J & De Mot R (1997c). Further sequence analysis of the DNA regions with the Rhodococcus 20S proteasome structural genes reveals extensive homology with Mycobacterium leprae. DNA Seq. 7: 225–228Google Scholar
  130. Nicholson VM & Prescott JF (1997) Restriction enzyme analysis of the virulence plasmids of VapA-positive Rhodococcus equi strains isolated from humans and horses. J. Clin. Microbiol. 35: 738–740Google Scholar
  131. Nordmann P, Keller M, Espinasse F & Ronco E (1994) Correlation between antibiotic-resistance, phage-like particle presence, and virulence in Rhodococcus-equi human isolates. J. Clin. Microbiol. 32: 377–382Google Scholar
  132. Oh S-H & Chater KF (1997) Denaturation of circular or linear DNA facilitates targeted integrative transformation of Streptomyces coelicolor A3(2): possible relevance to other organisms. J. Bacteriol. 179: 122–127Google Scholar
  133. Okanishi M, Suzuki K & Umezawa H (1974) Formation and reversion of streptomycete protoplasts: cultural conditions and morphological study. J. Gen. Microbiol. 80: 389–400Google Scholar
  134. Pelicic V, Reyrat J-M & Gicquel B (1996) Generation of unmarked directed mutations in mycobacteria, using sucrose counter-selectable vectors. Mol. Microbiol. 20: 919–925Google Scholar
  135. Pelicic V, Jackson M, Reyrat J-M, Jacobs WR Jr, Gicquel B & Guilhot C (1997) Efficient allelic exchange and transposons mutagenesis in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 94: 10955–10960Google Scholar
  136. Picardeau M, Varnerot A, Rauzier J, Gicquel B & Vincent V (1996) Mycobacterium xenopi IS1395, a novel insertion sequence expanding the IS256 family. Microbiology 142: 2453–2461Google Scholar
  137. Picardeau M, Bull T J & Vincent V (1997) Identification and characterization of IS-like elements in Mycobacterium gordonae. FEMS Microbiol. Lett. 154: 95–102Google Scholar
  138. Piddington CS, Kovacevich BR & Rambosek J (1995) Sequence and molecular characterization of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp. strain IGTS8. Appl. Environ. Microbiol. 61: 468–475Google Scholar
  139. Pisabarro A, Correia A & Martin JF (1998) Pulsed-field gel electrophoresis analysis of the genome of Rhodococcus fuscians: genome size and linear and circular replicon composition in virulent and avirulent strains. J. Biol. Chem. 47, 29454–29459Google Scholar
  140. Pogorelova TE, Ryabchenko LE, Sunzov NI & Yanenko AS (1996) Cobalt-dependent transcription of the nitrile hydratase gene in Rhodococcus rhodochrous M8. FEMS Microbiol. Lett. 144: 191–195Google Scholar
  141. Prauser H (1976) Host-phage relationships in nocardioform organisms. In: Goodfellow M, Brownell GH & Serrano JA (Eds) The Biology of the Nocardiae (pp 206–284). Academic Press, LondonGoogle Scholar
  142. Prescott JF (1991) Rhodococcus equi: an animal and human pathogen. Clin. Microbiol. Rev. 4: 20–34.Google Scholar
  143. Quan S & Dabbs ER (1993) Nocardioform arsenic resistance plasmid characterization and improved Rhodococcus cloning vectors. Plasmid 29: 74–79Google Scholar
  144. Rådstr & #x00F6;m P, Sk & #x00F6;ld O, Swedberg G, Flensburg J, Roy PH & Sundstr & #x00F6;m L (1994) Transposon Tn5090 of plasmid R751, which carries an integron, is related to Tn 7, Mu, and the retroelements. J. Bacteriol. 176: 3257–3268Google Scholar
  145. Rainey FA, Burghardt J, Kroppenstedt RM, Klatte S & Stackebrandt E (1995) Phylogenetic analysis of the genera Rhodococcus and Nocardia and evidence for the evolutionary origin of the genus Nocardia from within the radiation of Rhodococcus species. Microbiology 141: 523–528Google Scholar
  146. Ramakrishnan L, Tran HT, Federspiel NA & Falkow S (1997) A crtB homolog essential for photochromogenicity in Mycobacterium marinum: isolation, characterization, and gene disruption via homologous recombination. J. Bacteriol. 179: 5862–868Google Scholar
  147. Rathbone DA, Holt PJ, Lowe CR & Bruce NC (1997) Molecular analysis of the Rhodococcus sp. strain H1 her gene and characterization of its product, a heroin esterase, expressed in Escherichia coli. Appl. Environ. Microbiol. 63: 2062–2066Google Scholar
  148. Roberts RJ & Macelis D (1997) REBASE-restriction enzymes and methylases. Nucleic Acids Res. 25: 248–262.Google Scholar
  149. Sander P, Meier A & B & #x00F6;ttger EC (1995) rpsL +: a dominant selectable marker for gene replacement in mycobacteria. Mol. Microbiol. 16: 991–1000Google Scholar
  150. Schreiner A, Fuchs K, Lottspeich F, Poth H & Lingens F (1991) Degradation of 2-methylaniline in Rhodococcus-rhodochrous — cloning and expression of 2 clustered catechol 2,3-dioxygenase genes from strain CTM. J. Gen. Microbiol. 137: 2041–2048Google Scholar
  151. Schupp R, H & #x00FC;tter R & Hopwood DA (1975) Genetic recombination in Nocardia mediterranei. J. Bacteriol. 121: 128–136Google Scholar
  152. Scott MA, Graham BS, Verall R, Dixon R, Schaffner W & Tham KY (1995) Rhodococcus equi — an increasingly recognised opportunist pathogen. Am. J. Clin. Pathol. 103: 649–655Google Scholar
  153. Sensfuss C, Reh M & Schlegel HG (1986) No correlation exists between the conjugative transfer of the autotrophic character and that of plasmids in Nocardia opaca strains. J. Gen. Microbiol. 132: 779–1007Google Scholar
  154. Shao ZQ & Behki R (1995) Cloning of the genes for degradation of the herbicides EPTC (S-ethyl dipropylthiocarbamate) and atrazine from Rhodococcus sp. strain TE1. Appl. Environ. Microbiol. 61: 2061–2065Google Scholar
  155. Shao ZQ & Behki R (1996) Characterization of the expression of the thcB gene, coding for a pesticide-degrading cytochrome P-450 in Rhodococcus strains. Appl. Environ. Microbiol. 62: 403–407Google Scholar
  156. Shao ZQ, Dick W A & Behki R M (1995a) An improved Escherichia coliRhodococcus shuttle vector and plasmid transformation in Rhodococcus spp. using electroporation. Lett. Appl. Microbiol. 21: 261–266Google Scholar
  157. Shao ZQ, Seffens W, Mulbry W & Behki R M (1995b) Cloning and expression of the s-triazine hydrolase gene (trzA) from Rhodococcus corallinus and development of Rhodococcus re-combinant strains capable of dealkylating and dechlorinating the herbicide atrazine. J. Bacteriol. 177: 5748–5755Google Scholar
  158. Shinohara M & Itoh T (1996) Specificity determinants in interaction of the initiator (Rep) proteins with the origins in the plasmids ColE2-P9 and ColE3-CA38 identified by chimera analysis. J. Mol. Biol. 257: 290–300Google Scholar
  159. Singer MEV & Finnerty WR (1988) Construction of an Escherichia coli-Rhodococcus shuttle vector and plasmid transformation in Rhodococcus species. J. Bacteriol. 170: 638–645Google Scholar
  160. Stark WM, Boocock MR & Sherratt DJ (1992) Catalysis by site-specific recombinases. Trends Genet. 8: 432–439Google Scholar
  161. Stolt P & Stoker NG (1996a) Functional definition of regions necessary for replication and incompatibility in the Mycobacterium fortuitum plasmid pAL5000. Microbiology 142: 2795–2802Google Scholar
  162. Stolt P & Stoker NG (1996b) Protein—DNA interactions in the ori region of the Mycobacterium fortuitum plasmid pAL5000. J. Bacteriol. 178: 6693–6700Google Scholar
  163. Stolt P & Stoker NG (1997) Mutational analysis of the regulatory region of the Mycobacterium plasmid pAL5000. Nucleic Acids Res. 25: 3840–3846Google Scholar
  164. Strohl W. R. (1992) Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res. 20: 961–974Google Scholar
  165. Sunairi M, Watanabe T, Oda H, Murooka H & Nakajima M (1993) Characterization of the genome of the Rhodococcus rhodochrous bacteriophage NJL. Appl. Environ. Microbiol. 59: 97–100Google Scholar
  166. Takai S (1997) Epidemiology of Rhodococcus equi infections: a review. Vet. Microbiol. 56: 167–176Google Scholar
  167. Takai S, Sekizaki T, Ozawa T, Sugawara T, Watanabe Y & Tsubaki S (1991) Association between a large plasmid and 15-kilodalton to 17-kilodalton antigens in virulent Rhodococcus equi. Infect. Immun. 59: 4056–4060Google Scholar
  168. Takai S, Watanabe Y, Ikeda T, Ozawa T, Matsukura S, Tamada Y, Tsubaki S & Sekizaki T (1993) Virulence-associated plasmids in Rhodococcus equi. J. Clin. Microbiol. 31: 1726Google Scholar
  169. Takai S, Sasaki Y, Ikeda T, Uchida Y, Tsubaki S & Sekizaki T (1994) Virulence of Rhodococcus equi isolates from patients with and without aids. J. Clin. Microbiol. 32: 457–462Google Scholar
  170. Takai S, Madarame H, Matsumoto C, Inoue M, Sasaki Y, Hasegawa Y, Tsubaki S & Nakane A (1995a) Pathogenesis of Rhodococcus equi infection in mice — roles of virulence plasmids and granulomagenic activity of bacteria. FEMS Immunol. Med.Microbiol. 11: 181–190Google Scholar
  171. Takai S, Imai Y, Fukunaga N, Uchida Y, Kamisawa K, Sasaki Y, Tsubaki S & Sekizaki T (1995b) Identification of virulenceassociated antigens and plasmids in Rhodococcus-equi from patients with AIDS. J. Infect. Dis. 172: 1306–1310Google Scholar
  172. Takechi S. & Itoh T (1995) Initiation of unidirectional ColE2 DNA replication by a unique priming mechanism. Nucleic Acids Res. 23: 4196–4201Google Scholar
  173. Takechi S, Matsui H & Itoh T (1995) Primer RNA synthesis by plasmid-specified Rep protein for initiation of ColE2 DNA replication. EMBO. 14: 5141–5147Google Scholar
  174. Tam AC, Behki RM & Kahn SU (1987) Isolation and characterisation of an EPTC-degrading Arthrobacter strain and evidence for plasmid-associated EPTC degradation. Appl. Environ. Microbiol. 53: 1088–1093Google Scholar
  175. Tamura T, Nagy I, Lupas A, Lottspeich F, Cejka Z, Schoofs G, Tanaka K, De Mot R & Baumeister W (1995) The first characterization of a eubacterial proteasome: the 20S complex of Rhodococcus. Curr. Biol. 5: 766–774Google Scholar
  176. Vereecke D (1997) Leafy gall induction by Rhodococcus fascians. PhD Thesis, University of Ghent, Belgium, 196 pp.Google Scholar
  177. Vereecke D, Villarroel R, Vanmontagu M & Desomer J, (1994) Cloning and sequence-analysis of the gene encoding isocitrate lyase from Rhodococcus fascians. Gene: 145, 109–114Google Scholar
  178. Vieira J & Messing J (1982) The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19: 159–268Google Scholar
  179. Voeykova T, Tabakov V, Mkrtumyan N, Yanenko A & Ryabchenko L (1994) Conjugative transfer of plasmid pTO1 from Escherichia coli to Rhodococcus spp. Biotechnol. Lett. 16: 555–560Google Scholar
  180. Waksman SA (1950) The Actinomycetes. Chimica Botanica Company Waltham, Massachusetts, USAGoogle Scholar
  181. Wang Y, Garnon J, Labb & #x00E9; D, Bergeron H & Lau PCK (1995) Sequence and expression of the bpdC1C2BADE genes involved in the initial steps of biphenyl/chlorobiphenyl degradation by Rhodococcus sp. M5. Gene 164: 117–122Google Scholar
  182. Warhurst AM & Fewson CA (1994) Biotransformations catalyzed by the genus Rhodococcus. Crit. Rev. Biotechnol. 14: 29–73Google Scholar
  183. Williams DR & Thomas CM (1992) Active partitioning of bacterial plasmids. J. Gen. Microbiol. 138: 1–6Google Scholar
  184. Williams ST, Sharples GP, Serrano JA, Serrano AA & Lacey J (1976) The micromorpholpgy and fine structure of nocardioform organisms. In: Goodfellow M, Brownell GH & Serrano JA (Eds) The Biology of the Nocardiae (pp 103–140). Academic Press, LondonGoogle Scholar
  185. Wolf S, Nagy I, Lupas A, Pfeifer G, Cejka Z, M & #x00FC;ller S, Engel A, De Mot R & Baumeister W (1998) Characterization of ARC, a divergent member of the AAA ATPase family from Rhodococcus erythropolis. J. Mol. Biol. 277: 13–25Google Scholar
  186. Yoon JH, Lee JS, Shin YK, Park YH & Lee ST (1997) Reclassification of Nocaridioides simplex ATCC 13260, ATCC 19565, and ATCC 19566 as Rhodococcus erythropolis. Int. J. Syst. Bacteriol. 47: 904–907Google Scholar
  187. Zheng H, Thachuk-Saad O & Prescott JF (1997) Development of a Rhodococcus equi–Escherichia coli plasmid shuttle vector. Plasmid 38: 180–187Google Scholar
  188. Z & #x00FC;hl F, Tamura T, Dolenc I, Cejka Z, Nagy I, De Mot R & Baumeister W (1997) Subunit topology of the Rhodococcus proteasome. FEBS. Lett. 400: 83–90Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Michael J. Larkin
    • 1
  • René De Mot
    • 2
  • Leonid A. Kulakov
    • 3
  • István Nagy
    • 2
  1. 1.The Questor Centre and School of Biology and BiochemistryThe Queen's University of BelfastBelfastUK
  2. 2.F.A. Janssens Laboratory of GeneticsCatholic University of LeuvenHeverleeBelgium
  3. 3.The Questor Centre and School of Biology and BiochemistryThe Queen's University of BelfastBelfastUK

Personalised recommendations