Skip to main content
Log in

Applied aspects of Rhodococcus genetics

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Eubacteria of the genus Rhodococcus are a diverse group of microorganisms commonly found in many environmental niches from soils to seawaters and as plant and animal pathogens. They exhibit a remarkable ability to degrade many organic compounds and their economic importance is becoming increasingly apparent. Although their genetic organisation is still far from understood, there have been many advances in recent years. Reviewed here is the current knowledge of rhodococci relating to gene transfer, recombination, plasmid replication and functions, cloning vectors and reporter genes, gene expression and its control, bacteriophages, insertion sequences and genomic rearrangements. Further fundamental studies of Rhodococcus genetics and the application of genetic techniques to the these bacteria will be needed for their continued biotechnological exploitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adams JN (1964) Recombination between Nocardia erythropolis and canicruria. J. Bacteriol. 88: 865–876

    Google Scholar 

  • Adams JN & Bradley SG (1963) Recombination events in the bacterial genus Nocardia. Science 140: 1392–1394

    Google Scholar 

  • Adams JN & Brownell GH (1976) Genetic studies in Nocardia erythropolis. In: Goodfellow M, Brownell GH & Serrano JA (Eds) The Biology of the Nocardiae (pp 285–309). Academic Press, London

    Google Scholar 

  • Allen CCR, Boyd DR, Larkin MJ, Reid KA, Sharma ND & Wilson K (1997) Metabolism of naphthalene, 1-naphthol, indene, and indole by Rhodococcus sp strain N CIMB 12038. Appl. Environ. Microbiol. 63: 151–155

    Google Scholar 

  • Andersen SJ, Quan S, Gowan B & Dabbs ER (1997) Monooxygenase-like sequence of a Rhodococcus equi gene conferring increased resistance to rifampin by inactivating this antibiotic. Antimicrob. Agents Chemother. 41: 218–221

    Google Scholar 

  • Archer JAC & Griffiths H (1995) Linear plasmids in Rhodococcus corallina V49. J. Cell. Biochem. NoS21A p45 abstract

  • Assaf NA & Dick WA (1993) Spheroplast formation and plasmid isolation from Rhodococcus spp. Biotechniques 15: 1010–1015

    Google Scholar 

  • Asturias JA & Timmis KN (1993) Three different 2,3-dihydroxybiphenyl-1,2-dioxygenase genes in the Gram-positive polychlorobiphenyl-degrading bacterium Rhodococcus globerulus P6. J. Bacteriol. 175: 4631–4640

    Google Scholar 

  • Asturias JA, Eltis LD, Prucha M & Timmis KN (1994a) Analysis of 3,2,3-dihydroxybiphenyl 1,2-dioxygenases found in Rhodococcus globerulus P6 — identification of a new family of extradiol dioxygenases. J. Biol. Chem. 269: 7807–7815

    Google Scholar 

  • Asturias JA, Moore E, Yakimov MM, Klatte S & Timmis KN (1994b) Reclassification of the polychlorinated biphenyldegraders Acinetobacter sp. strain P6 and Corynebacterium sp. strain MB1 as Rhodococcus globerulus. Syst. Appl. Microbiol. 17: 226–231

    Google Scholar 

  • Asturias JA, D & #x00ED;az E & Timmis KN (1995) The evolutionary relationship of biphenyl dioxygenase from Gram-positive Rhodococcus globerulus P6 to multicomponent dioxygenases from Gram-negative bacteria. Gene 156: 11–18

    Google Scholar 

  • Baltz RH & Hosted TH (1996) Molecular genetic methods for improving secondary-metabolite production in actinomycetes. Trends Biotechnol. 14: 245–250

    Google Scholar 

  • Bardarov S, Kriakov J, Carrierre C, Yu S, Vaamonde C, McAdam RA, Bloom BR, Hatfull GF & Jacobs Jr WR (1997) Conditionally replicating mycobacteriophages: a system for transposon delivery to Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 94: 10961–10966

    Google Scholar 

  • Baril C, Richaud C, Baranton g & Saint Girons IS (1989) Linear chromosome of Borrelia burgdorferi. Res. Microbiol. 140: 507–516

    Google Scholar 

  • Barnes MR, Duetz WA & Williams PA (1997) A 3-(3-hydroxyphenyl)propionic acid catabolic pathway in Rhodococcus globerulus PWD1: cloning and characterization of the hpp operon. J. Bacteriol. 179: 6145–6153

    Google Scholar 

  • Bashyam MD, Kaushal D, Dasgupta SK & Tyagi AK (1996) A study of the mycobacterial transcriptional apparatus: identification of novel features in promoter elements. J. Bacteriol. 178: 4847–4853

    Google Scholar 

  • Behki RM (1991) Di-allate degradation by an EPTC-degrading Rhodococcus, and in eptc-treated soil. Soil Biol. Biochem. 23: 789–793

    Google Scholar 

  • Behki R, Topp E, Dick W & Germon P (1993) Metabolism of the herbicide atrazine by Rhodococcus strains. Appl. Environ. Microbiol. 59: 1955–1959

    Google Scholar 

  • Behki RM, Topp EE & Blackwell BA (1994) Ring hydroxylation of N-methylcarbamate insecticides by Rhodococcus TE1. J. Agric. Fd. Chem. 42: 1375–1378

    Google Scholar 

  • Bigey F, Grossiord B, Chan Kwo Chion CKN, Arnaud A & Galzy P (1995) Brevibacterium linens pBL33 and Rhodococcus rhodochrous pRC1 cryptic plasmids replicate in Rhodococcus sp. R312 (formerly Brevibacterium sp. R312) Gene 154: 77-79

    Google Scholar 

  • Blake JA, Ganguly N & Sherratt DJ (1997) DNA sequence of recombinase-binding sites can determine Xer site-specific recombination outcome. Mol. Microbiol. 23: 387–398

    Google Scholar 

  • Blakey GW, Davidson AO & Sherratt DJ (1997) Binding and cleaving of nicked substrates by site-specific recombinases XerC and XerD. J. Mol. Biol. 265: 30–39

    Google Scholar 

  • Bourn WR & Babb B (1995) Computer assisted identification and classification of streptomycete promoters. Nucleic Acids Res. 23: 3696–3703

    Google Scholar 

  • Briglia M, Eggen RIL, van Elsas D & de Vos WM (1994) Phylogenetic evidence for transfer of pentachlorophenol-mineralizing Rhodococcus chlorophenolicus PCP-IT to the genus Mycobacterium. Int. J. Syst. Bacteriol. 44: 494–498

    Google Scholar 

  • Brownell GH (1974) A new nocardial mating strain. Am. Soc. Microbiol. Abstract p 41

  • Brownell GH & Adams JN (1968) Linkage and segregation of a mating type specific phage and resistance chararacters in nocardial recombinants. Genetics 60: 437–448

    Google Scholar 

  • Brownell GH & Denniston K (1984) Genetics of the nocardioform bacteria. In: Goodfellow M, Mordarski M & Williams ST (Eds) The Biology of the Actinomycetes, (pp 201–208). Academic Press, New York

    Google Scholar 

  • Brownell GH & Kelly KL (1969) Inheritance of mating type factors in nocardial recombinants. J. Bacteriol. 99: 25–36

    Google Scholar 

  • Brownell GH, Adams JN & Bradley SG (1967) Growth and characterisation of nocardiophages for Nocardia canicruria and Nocardia erythropolis mating types. J. Gen. Microbiol. 47: 247–256

    Google Scholar 

  • Brownell GH, Enquist LW & Denniston-Thompson K (1980) An analysis of the genome of the actinophage ?EC. Gene 12: 311–314

    Google Scholar 

  • Brownell GH, Saba JA, Denniston-Thompson K & Enquist LW (1982) The development of a Rhodococcus-actinophage cloning system. Dev. Ind. Microbiol. 23: 287–298

    Google Scholar 

  • Brunhuber NM, Banerjee A, Jacobs WR Jr. & Blanchard JS (1994) Cloning, sequencing, and expression of Rhodococcus l-phenylalanine dehydrogenase. Sequence comparisons to amino acid dehydrogenases. J. Biol. Chem. 269: 16203–16211

    Google Scholar 

  • Candidus S, VanPee KH & Lingens F (1994) The catechol 2,3-dioxygenase gene of Rhodococcus rhodochrous CTM — nucleotide sequence, comparison with isofunctional dioxygenases and evidence for an active-site histidine. Microbiology 140: 321–330

    Google Scholar 

  • Chan Kwo Chion CKN, Duran R, Arnaud A & Galzy P (1991a) Cloning vectors and antibiotic-resistance markers for Brevibacterium sp. R312. Gene 105: 119–124

    Google Scholar 

  • Chan Kwo Chion CKN, Duran R, Arnaud A & Galzy P (1991b) Electrotransformation of whole cells of Brevibacterium sp. R312, a nitrile hydratase producing strain: construction of a cloning vector. FEMS Microbiol. Lett. 81: 177–187

    Google Scholar 

  • Chen CW (1996) Complications and implications of linear bacterial chromosomes. Trends Genet. 12: 192–196

    Google Scholar 

  • Clark JE & Brownell GH (1972) Genophore homologies among compatible nocardiae. J. Bacteriol. 109: 720–729

    Google Scholar 

  • Crespi M, Messens E, Caplan AB, Vanmontagu M & Desomer J (1992) Fasciation induction by the phytopathogen Rhodococcus fascians depends upon a linear plasmid encoding a cytokinin synthase gene. EMBO Journal 11: 795–804

    Google Scholar 

  • Crespi M, Vereecke D, Temmerman W, Vanmontagu M & Desomer J (1994) The fas operon of Rhodococcus fascians encodes new genes required for efficient fasciation of host plants. J. Bacteriol. 176: 2492–2501

    Google Scholar 

  • Crockett JK & Brownell GH (1972) Isolation and characterisation of a lysogenic strain of Nocardia erythropolis. J. Gen. Virol. 10: 737–742

    Google Scholar 

  • Curragh H, Flynn O, Larkin MJ, Stafford TM, Hamilton JTG & Harper DB (1994) Haloalkane degradation and assimilation by Rhodococcus rhodochrous NCIMB13064. Microbiology 140: 1433–1442

    Google Scholar 

  • Dabbs ER (1987) A generalized transducing bacteriophage for Rhodococcus erythropolis. Mol. Gen Genet. 206: 116–120

    Google Scholar 

  • Dabbs ER (1998) Cloning of genes that have environmental and clinical importance from rhodococci and related bacteria. Antonie van Leeuwenhoek 74: 155–168

    Google Scholar 

  • Dabbs ER & Sole GJ (1988) Plasmid-borne resistance to arsenate, arsenite, cadmium and chloramphenicol in a Rhodococcus species. Mol. Gen. Genet. 211: 148–154

    Google Scholar 

  • Dabbs ER, Gowan B & Andersen SJ (1990) Nocardioform arsenic resistance plasmids and construction of Rhodococcus cloning vectors. Plasmid 23: 242–247

    Google Scholar 

  • Dabbs ER, Gowan B, Quan S & Andersen SJ (1995) Development of improved Rhodococcus plasmid vectors and their use in cloning genes of potential commercial and medical importance. Biotechnologia 7–8: 129–135

    Google Scholar 

  • Dabrock B, Kesseler M, Averhoff B & Gottschalk G (1994) Identification and characterization of a transmissible linear plasmid from Rhodococcus erythropolis BD2 that encodes isopropylbenzene and trichloroethene catabolism. Appl. Environ. Microbiol. 60: 853–860

    Google Scholar 

  • de la Pena-Moctezuma A & Prescott JF (1995) A physical map of the 85 kb virulence plasmid of Rhodococcus equi 103. Can. J. Vet. Res. 59: 229–231

    Google Scholar 

  • De Mot R, Nagy I, Schoofs G & Vanderleyden J (1994a) Sequences of the cobalamin biosynthetic genes cobK, cobL, and cobM from Rhodococcus sp. NI86/21. Gene 143: 91–93

    Google Scholar 

  • De Mot R, Nagy I, Schoofs G & Vanderleyden J (1994b) Sequence of a Rhodococcus gene cluster encoding the subunits of ethanolamine ammonia-lyase and an APC-like permease. Can. J. Microbiol. 40: 403–407

    Google Scholar 

  • De Mot R, Nagy I, De Schrijver A, Pattanapipitpaisal P, Schoofs G & Vanderleyden J (1997). Structural analysis of the 6 kb cryptic plasmid pFAJ2600 from Rhodococcus erythropolis NI86/21 and construction of Escherichia coli–Rhodococcus shuttle vectors. Microbiology 143: 3137–3147

    Google Scholar 

  • Denis-Larose C, Labbe D, Bergeron H, Jones AM, Greer CW, Alhawari J, Grossman MJ, Sankey BM & Lau PCK (1997) Conservation of plasmid-encoded dibenzothiophene desulfurisation genes in several rhodococci. Appl. Environ. Microbiol. 63: 2915–2919

    Google Scholar 

  • Denome SA & Young KD (1995) Identification and activity of two insertion-sequence elements in Rhodococcus sp strain IGTS8. Gene 161: 33–38

    Google Scholar 

  • Denome SA, Olson ES & Young KD (1993) Identification and cloning of genes involved in specific desulfurization of dibenzothiophene by Rhodococcus sp strain IGTS8. Appl. Environ. Microbiol. 59: 2837–2843

    Google Scholar 

  • Denome SA, Oldfield C, Nash LJ & Young KD (1994) Characterization of the desulfurization genes from Rhodococcus sp. strain IGTS8. J. Bacteriol. 176: 6707–6716

    Google Scholar 

  • De Schrijver A, Nagy I, Schoofs G, Proost P, Vanderleyden J, van P & #x00E9;e K-H & De Mot R (1997) The thiocarbamate herbicide-inducible nonheme chloroperoxidase of Rhodococcus erythropolis NI86/21. Appl. Environ. Microbiol. 634: 1911–1916

    Google Scholar 

  • Desomer J, Dhaese P & Van Montagu M (1988) Conjugative transfer of cadmium resistance plasmids in Rhodococcus fascians strains. J. Bacteriol. 170: 2401–2405

    Google Scholar 

  • Desomer J, Dhaese P & Van Montagu M (1990) Transformation of Rhodococcus fascians by high-voltage electroporation and development of R. fascians cloning vectors. Appl. Environ. Microbiol. 56: 2818–2825

    Google Scholar 

  • Desomer J, Crespi M & Vanmontagu M (1991) Illegitimate integration of non-replicative vectors in the genome of Rhodococcus fascians upon electrotransformation as an insertional mutagenesis system. Mol. Microbiol. 5: 2115–2124

    Google Scholar 

  • Desomer J, Vereecke D, Crespi M & Van Montagu M (1992) The plasmid-encoded chloramphenicol-resistance protein of Rhodococcus fascians is homologous to the transmembrane efflux proteins. Mol. Microbiol. 6: 2377–2385

    Google Scholar 

  • Dhandayuthapani S, Via LE, Thomas CA, Horowitz PM & Deretic D (1995). Green fluorescent protein as a marker for gene expression and cell biology of mycobacterial interactions with macrophages. Mol. Microbiol. 17: 901–912

    Google Scholar 

  • Eltis LD & Bolin JT (1996) Evolutionary relationship among extradiol dioxygenases. J. Bacteriol. 178: 5930–5937

    Google Scholar 

  • Eulberg D, Golovleva LA & Schlomann M (1997) Characterisation of catechol catabolic genes from Rhodococcus erythropolis 1CP. J. Bacteriol. 179: 370–381

    Google Scholar 

  • Ferdows MS & Barbour AG (1989) Megabase-sized linear DNA in the bacterium Borrelia burgdorferi, the Lyme disease agent. Proc. Natl. Acad. Sci. USA 86: 5969–5973

    Google Scholar 

  • Finnerty WR (1992) The biology and genetics of the genus Rhodococcus. Ann. Rev. Microbiol. 46: 193–218

    Google Scholar 

  • Gallardo ME, Ferr & #x00E1;ndez A, de Lorenzo V, Garc & #x00ED;a JL & D & #x00ED;az E (1997) Designing recombinant Pseudomonas strains to enhance biodesulfurization. J. Bacteriol. 179: 7156–7160

    Google Scholar 

  • Gallegos M-T, Schleif R, Bairoch A, Hofmann K & Ramos J (1997) AraC/XylS family of transcriptional regulators. Microbiol. Mol. Biol. Rev. 61: 393–410

    Google Scholar 

  • Gonzalez-y-Merchand JA, Colston MJ & Cox RA (1996) The rRNA operons of Mycobacterium smegmatis and Mycobacterium tuberculosis: comparison of promoter elements and of neighbouring upstream genes. Microbiology 142: 667–674

    Google Scholar 

  • Goodfellow M, Alderson G & Chun I (1998) Rhodococcal systematics: problems and developments. Antonie van Leeuwenhoek 74: 3–20

    Google Scholar 

  • Goodfellow M (1989) Suprageneric classification of actinomycetes. In: Williams ST, Sharpe ME & Holt JG (Eds) Bergey & #x2019;s Manual of Systematic Bacteriology, Vol 4 (pp 2333–2339). Williams and Wilkins, Baltimore

    Google Scholar 

  • Gowan B & Dabbs ER (1994) Identification of DNA involved in Rhodococcus chromosomal conjugation and self-incompatibility. FEMS Microbiol. Lett. 115: 45–50

    Google Scholar 

  • Green EP, Tizard ML, Moss MT, Thompson J, Winterbourne DJ, McFadden JJ & Hermon-Taylor J (1989) Sequence and characteristics of IS900, an insertion element identified in human Crohn & #x2019;s disease isolate of Mycobacterium paratuberculosis. Nucleic Acids Res. 17: 9063–9073

    Google Scholar 

  • Grzeszik C, L & #x00FC;bbers M, Reh M & Schlegel HG (1997) Genes encoding the NAD-reducing hydrogenase of Rhodococcus opacus MR11. Microbiology 143: 1271–1286

    Google Scholar 

  • Guilhot C, Otal I, Van Rompaey I, Martìn C & Gicquel B (1994) Efficient transposition in mycobacteria: construction of Mycobacterium smegmatis insertional mutant libraries. J. Bacteriol. 176: 535–539

    Google Scholar 

  • Haas D, Berger B, Schmid S, Seitz T & Reimmann C (1996) Insertion sequence IS21: related insertion sequence elements, transpositional mechanisms, and application to linker insertion mutagenesis. In Nakazawa T, Furukawa K, Haas D & Silver S (Eds) Molecular Biology of Pseudomonads (pp 238–249). ASM Press, Washington DC.

    Google Scholar 

  • H & #x00E4;ggblom Mm, Nohynek LJ, Palleroni NJ, Kronqvist K, Nurmiaho-Lassila E-L, Salkinoja-Salonen MS, Klatte S & Kroppenstedt RM (1994) Transfer of polychlorophenol-degrading Rhodococcus chlorophenolicus (Apajalahti et al. 1986) to the genus Mycobacterium as Mycobacterium chlorophenolicum comb. nov. Int. J. Syst. Bacteriol. 44: 485–493

    Google Scholar 

  • Hall RM 1997. Mobile gene cassettes and integrons: moving antibiotic resistance genes in gram-negative bacteria. Ciba Found. Symp. 207: 192–202

    Google Scholar 

  • Hall RM, Brown HJ, Brookes DE & Stokes HW (1994) Integrons found in different locations have identical 50-ends but variable 30 ends. J. Bacteriol. 176: 6286–6294

    Google Scholar 

  • Hashimoto Y, Nishiyama M, Ikehata O, Horinouchi S & Beppu T (1991) Cloning and characterization of an amidase gene from Rhodococcus species N-774 and its expression in Escherichia coli. Biochim. Biophys. Acta 1088: 225–233

    Google Scholar 

  • Hashimoto Y, Nishiyama M, Yu F, Watanabe I, Horinouchi S & Beppu T (1992) Development of a host-vector system in a Rhodococcus strain and its use for expression of the cloned nitrile hydratase gene cluster. J. Gen. Microbiol. 138: 1003–1010

    Google Scholar 

  • Hayakawa T, Tanaka, T, Sakaguchi K, Otake N & Yonehara H (1979) A linear plasmid-like DNA in Streptomyces sp. producing lankacidin group antibiotics. J. Gen. Appl. Microbiol. 25: 255–260

    Google Scholar 

  • Heiss GS, Gowan B & Dabbs ER (1992) Cloning of DNA from a Rhodococcus strain conferring the ability to decolorize sulfonated azo dyes. FEMS Microbiol. Lett. 99: 221–226

    Google Scholar 

  • Hinnebusch J & Tilly K (1993) Linear plasmids and chromosomes in bacteria. Mol. Microbiol. 10: 917–922

    Google Scholar 

  • Hiraga S-I, Sugiyama T & Itoh T (1994) Comparative analysis of the replicon region of eleven ColE2-related plasmids. J. Bacteriol. 176: 7233–7243

    Google Scholar 

  • Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ, Kieser HM, Lydiate DJ, Smith CP, Ward JM & Schrempf H (1985) Genetic Manipulation of Streptomyces: A Laboratory Manual. John Innes, Norwich, UK

    Google Scholar 

  • Hopwood DA, Bibb MJ, Chater KF, Janssen GR, Malpartida F & Smith P (1986) In Booth JR & Higgins CF (Eds) Regulation of Gene Expression. 25 Years on (pp 251–276). Symp. Soc. Gen. Microbiol., University of Cambridge Press, Cambridge, UK

    Google Scholar 

  • Izsvak Z, Jobbagy Z, Takacs I & Duda E (1997) Cloning and characterization of the genes of the CeqI restriction-modification system. Int. J. Biochem. Cell Biol. 29: 895–900

    Google Scholar 

  • Izu H, Izumi Y, Kurome Y, Sano M, Kondo A, Kato I & Ito M (1997) Molecular cloning, expression, and sequence analysis of the endoglycoceramidase II gene from Rhodococcus species strain M777. J. Biol. Chem. 72: 19846–19850

    Google Scholar 

  • J & #x00E4;ger W, Sch & #x00E4;fer A, P & #x00FC;hler A, Labes g & Wohlleben W (1992) Expression of the Bacillus subtilis sacB gene leads to sucrose sensitivity in the gram-positive bacterium Corynebacterium glutamicum but not in Streptomyces lividans. J. Bacteriol. 174: 5462–5465

    Google Scholar 

  • J & #x00E4;ger W, Sch & #x00E4;fer A, Kalinowski J & P & #x00FC;hler A (1995) Isolation of insertion elements from Gram-positive Brevibacterium, Corynebacterium and Rhodococcus strains using the Bacillus subtilis sacB gene as a positive selection marker. FEMS Microbiol. Lett. 126: 1–6

    Google Scholar 

  • Kalkus J, Dorrie C, Fischer D, Reh M & Schlegel H G (1993) The giant linear plasmid pHG207 from Rhodococcus sp. encoding hydrogen autotrophy — characterization of the plasmid and its termini. J. Gen. Microbiol. 139: 2055–2065

    Google Scholar 

  • Kasweck KL & Little ML (1982) Genetic recombination in Nocardia asteroides. J. Bacteriol. 149: 403–406

    Google Scholar 

  • Kesseler M, Dabbs E R, Averhoff B & Gottschalk G (1996) Studies on the isopropylbenzene 2,3-dioxygenase and the 3-isopropylcatechol 2,3-dioxygenase genes encoded by the linear plasmid of Rhodococcus erythropolis BD2. Microbiology 142: 3241–3251

    Google Scholar 

  • Kholodii GY, Mindlin SZ, Bass IA, Yurieva OV, Minakhina SV & Nikiforov VG (1995) Four genes, two ends, and a res region are involved in transposition of Tn5053: a paradigm for a novel family of transposons carrying either a mer operon or an integron. Mol. Microbiol. 17: 1189–1200

    Google Scholar 

  • Kobayashi M, Nishiyama M, Nagasawa T, Horinouchi S, Beppu T & Yamada H (1991) Cloning, nucleotide sequence and expression in Escherichia coli of two cobalt-containing nitrile hydratase genes from Rhodococcus rhodochrous J1. Biochim. Biophys. Acta 1129: 23–33

    Google Scholar 

  • Kobayashi M, Komeda M, Yanaka N, Nagasawa T & Yamada H (1992a) Nitrilase from Rhodococcus rhodochrous J1. Sequencing and overexpression of the gene and identification of an essential cysteine residue. J. Biol. Chem. 267: 20746–20751

    Google Scholar 

  • Kobayashi M, Yanaka N, Nagasawa T & Yamada H (1992b) Primary structure of an aliphatic nitrile-degrading enzyme, aliphatic nitrilase, from Rhodococcus rhodochrous K22 and expression of its gene and identification of its active site residue. Biochemistry 31: 9000–9007

    Google Scholar 

  • Kobayashi M, Komeda H, Nagasawa T, Nishiyama M, Horinouchi S, Beppu T, Yamada H & Shimizu S (1993) Amidase coupled with low-molecular-mass nitrile hydratase from Rhodococcus rhodochrous J1. Sequencing and expression of the gene and purification and characterization of the gene product. Eur. J. Biochem. 217: 327–336

    Google Scholar 

  • Kobayashi M, Komeda H, Shimizu S, Yamada H & Beppu T (1997) Characterization and distribution of IS1164 that exists in the high molecular mass nitrile hydratase gene cluster of the industrial microbe Rhodococcus rhodochrous J1. Proc. Jpn. Acad. 73B: 104–108

    Google Scholar 

  • Kolst & #x00F8; AB (1997) Dynamic bacterial genome organization. Mol. Microbiol. 24: 241–248

    Google Scholar 

  • Komeda H, Kobayashi M & Shimizu S (1996a) A novel gene-cluster including the Rhodococcus rhodochrous J1 nhlBA genes encoding a low-molecular-mass nitrile hydratase (l-nhase) induced by its reaction product. J. Biol. Chem. 271: 15796–15802

    Google Scholar 

  • Komeda H, Kobayashi M & Shimizu S (1996b) Characterization of the gene cluster of high molecular mass nitrile hydratase (L-NHase) induced by its reaction product in Rhodococcus rhodochrous J1. Proc. Natl. Acad. Sci. USA 93: 4267–4272

    Google Scholar 

  • Komeda H, Hori Y, Kobayashi M & Shimizu S (1996c) Transcriptional regulation of the Rhodococcus rhodochrous J1 nitA gene encoding a nitrilase. Proc. Natl. Acad. Sci. USA 93: 10572–10577

    Google Scholar 

  • Komeda H, Kobayashi M & Shimizu S (1997) A novel transporter involved in cobalt uptake. Proc. Natl. Acad. Sci. USA 94: 36–41

    Google Scholar 

  • Kosono S, Maeda M, Fuji F, Arai H & Kudo T (1997) Three of the seven bphC genes of Rhodococcus erythropolis TA421, isolated from a termite ecosystem, are located on an indigenous plasmid associated with biphenyl degradation. Appl. Environ. Microbiol. 63: 3282–3285

    Google Scholar 

  • Kremer L, Baulard A, Estaquier J, Poulain-Godefroy O & Locht C (1995) Green fluorescent protein as a new expression marker in mycobacteria. Mol. Microbiol. 17: 913–922

    Google Scholar 

  • Kulakova AN, Stafford TM, Larkin MJ & Kulakov LA (1995) Plasmid pRTL1 controlling 1-chloroalkane degradation by Rhodococcus rhodochrous NCIMB 13064. Plasmid 33: 208–217

    Google Scholar 

  • Kulakova AN, Reid KA, Larkin MJ, Allen CCR & Kulakov LA (1996) Isolation of Rhodococcus rhodochrous NCIMB13064 derivatives with new biodegradative abilities. FEMS Microbiol. Lett. 145: 227–231

    Google Scholar 

  • Kulakova AN, Larkin MJ & Kulakov LA (1997) The plasmidlocated haloalkane dehalogenase gene from Rhodococcus rhodochrous NCIMB 13064. Microbiology 143: 109–115

    Google Scholar 

  • Kulakov LA, Larkin MJ & Kulakova AN (1997) Cryptic plasmid pKA22 isolated from the naphthalene degrading derivative of Rhodococcus rhodochrous NCIMB13064. Plasmid 38: 61–69

    Google Scholar 

  • Kulakov LA, Delcroix VA, Larkin MJ, Ksenzenko VN & Kulakova AN (1998) Cloning of new Rhodococcus extradiol dioxygenase genes and study of their distribution in different Rhodococcus strains. Microbiology 144: 955–963

    Google Scholar 

  • Labb & #x00E9; D, Garnon J & Lau PCK (1997) Characterization of the genes encoding a receptor-like histidine kinase and a cognate response regulator from a biphenyl/polychlorobiphenyl-degrading bacterium, Rhodococcus sp. strain M5. J. Bacteriol. 179: 2772–2776

    Google Scholar 

  • Lefebvre G, Martin N, Kilbertus G & Gay R (1978) Studies on the morphogenesis of nocardioform organisms related to the & #x2018;rhodochrous & #x2019; taxon in synchronous cultures. J. Gen. Microbiol. 108: 125–131

    Google Scholar 

  • Lei B & Tu S-C (1996) Gene expression, purification, and identification of a desulfurization enzyme from Rhodococcus sp. strain IGTS8 as a sulfide/sulfoxide monooxygenase. J. Bacteriol. 178: 5699–5705

    Google Scholar 

  • Leskiw BK, Mevarech M, Barritt LS, Jensen SE, Henderson DJ, Hopwood DA, Bruton CJ & Chater KF (1990) Discovery of an insertion sequence, IS116, from Streptomyces clavuligerus and its relatedness to other transposable elements from actinomycetes. J. Gen. Microbiol. 136: 1251–1258

    Google Scholar 

  • Li MZ, Squires CH, Monticello DJ & Childs JD (1996) Genetic analysis of the dsz promoter and associated regulatory regions of Rhodococcus erythropolis IGTS8. J. Bacteriol. 178: 6409–6418

    Google Scholar 

  • Locci R & Sharples GP (1984) Morphology. In: Goodfellow M, Mordarski M & Williams ST (Eds) The Biology of the Actinomycetes (pp 165–199) Academic Press, New York

    Google Scholar 

  • Lupas A, Z & #x00FC;hl F, Tamura T, Wolf S, Nagy I, De Mot R & Baumeister W (1997) Eubacterial proteasomes. Mol. Biol. Rep. 24: 125–131

    Google Scholar 

  • Masai E, Yamada A, Healey JM, Hatta T, Kimbara K, Fukuda M & Yano K (1995) Characterisation of biphenyl catabolic genes of Gram-positive polychlorinated biphenyl degrader Rhodococcus sp strain RHA1. Appl. Environ. Microbiol. 61: 2079–2085

    Google Scholar 

  • Masai E, Sugiyama K, Iwashita N, Shimizu S, Hauschild J E, Hatta T, Kimbara K, Yano K & Fukuda M (1997) The bphDEF metacleavage pathway genes involved in biphenyl/polychlorinated biphenyl degradation are located on a linear plasmid and separated from the initial bphABC genes in Rhodococcus sp. strain RHA1. Gene 187: 141–149

    Google Scholar 

  • Mayaux JF, Cerbelaud E, Soubrier F, Yeh P, Blanche F & Petre D (1991) Purification, cloning, and primary structure of a new enantiomer-selective amidase from a Rhodococcus strain — structural evidence for a conserved genetic coupling with nitrile hydratase. J. Bacteriol. 173: 6694–6704

    Google Scholar 

  • McKay DB, Seeger M, Zielinski M, Hofer B & Timmis KN (1997) Heterologous expression of biphenyl dioxygenase-encoding genes from a gram-positive broad-spectrum polychlorinated biphenyl degrader and characterization of chlorobiphenyl oxidation by the gene products. J. Bacteriol. 179: 1924–1930

    Google Scholar 

  • Meinhardt F, Schaffrath R & Larsen M (1997) Microbial linear plasmids. Appl. Microbiol. Biotech. 47: 329–336

    Google Scholar 

  • Motallebi-Veshareh M, Rouch DA & Thomas CM (1990) A family of ATPases involved in active partitioning of diverse bacterial plasmids. Mol. Microbiol. 4: 1455–1463

    Google Scholar 

  • Nagy I, Compernolle F, Ghys K, Vanderleyden J & De Mot R (1995a) A single cytochrome P-450 system is involved in degradation of the herbicides EPTC (S-ethyl dipropylthiocarbamate) and atrazine by Rhodococcus sp. NI86/21. Appl. Environ. Microbiol. 61: 2056–2060

    Google Scholar 

  • Nagy I, Schoofs G, Compernolle F, Proost P, Vanderleyden J & De Mot R (1995b) Degradation of the thiocarbamate herbicide EPTC (S-ethyl dipropylcarbamothioate) and biosafening by Rhodococcus sp. NI86/21 involve an inducible cytochrome P-450 system and aldehyde dehydrogenase. J. Bacteriol. 177: 676–687

    Google Scholar 

  • Nagy I, Schoofs G, De Schrijver A, Vanderleyden J & De Mot R (1997a) New method for RNA isolation from actinomycetes: application to the transcriptional analysis of the alcohol oxidoreductase gene thcE in Rhodococcus and Mycobacterium. Lett. Appl. Microbiol. 25: 75–79

    Google Scholar 

  • Nagy I, Schoofs G, Vanderleyden J & De Mot R (1997b) Transposition of the IS21-related element IS1415 in Rhodococcus erythropolis. J. Bacteriol. 179: 4635–4638

    Google Scholar 

  • Nagy I, Schoofs G, Vanderleyden J & De Mot R (1997c). Further sequence analysis of the DNA regions with the Rhodococcus 20S proteasome structural genes reveals extensive homology with Mycobacterium leprae. DNA Seq. 7: 225–228

    Google Scholar 

  • Nicholson VM & Prescott JF (1997) Restriction enzyme analysis of the virulence plasmids of VapA-positive Rhodococcus equi strains isolated from humans and horses. J. Clin. Microbiol. 35: 738–740

    Google Scholar 

  • Nordmann P, Keller M, Espinasse F & Ronco E (1994) Correlation between antibiotic-resistance, phage-like particle presence, and virulence in Rhodococcus-equi human isolates. J. Clin. Microbiol. 32: 377–382

    Google Scholar 

  • Oh S-H & Chater KF (1997) Denaturation of circular or linear DNA facilitates targeted integrative transformation of Streptomyces coelicolor A3(2): possible relevance to other organisms. J. Bacteriol. 179: 122–127

    Google Scholar 

  • Okanishi M, Suzuki K & Umezawa H (1974) Formation and reversion of streptomycete protoplasts: cultural conditions and morphological study. J. Gen. Microbiol. 80: 389–400

    Google Scholar 

  • Pelicic V, Reyrat J-M & Gicquel B (1996) Generation of unmarked directed mutations in mycobacteria, using sucrose counter-selectable vectors. Mol. Microbiol. 20: 919–925

    Google Scholar 

  • Pelicic V, Jackson M, Reyrat J-M, Jacobs WR Jr, Gicquel B & Guilhot C (1997) Efficient allelic exchange and transposons mutagenesis in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 94: 10955–10960

    Google Scholar 

  • Picardeau M, Varnerot A, Rauzier J, Gicquel B & Vincent V (1996) Mycobacterium xenopi IS1395, a novel insertion sequence expanding the IS256 family. Microbiology 142: 2453–2461

    Google Scholar 

  • Picardeau M, Bull T J & Vincent V (1997) Identification and characterization of IS-like elements in Mycobacterium gordonae. FEMS Microbiol. Lett. 154: 95–102

    Google Scholar 

  • Piddington CS, Kovacevich BR & Rambosek J (1995) Sequence and molecular characterization of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp. strain IGTS8. Appl. Environ. Microbiol. 61: 468–475

    Google Scholar 

  • Pisabarro A, Correia A & Martin JF (1998) Pulsed-field gel electrophoresis analysis of the genome of Rhodococcus fuscians: genome size and linear and circular replicon composition in virulent and avirulent strains. J. Biol. Chem. 47, 29454–29459

    Google Scholar 

  • Pogorelova TE, Ryabchenko LE, Sunzov NI & Yanenko AS (1996) Cobalt-dependent transcription of the nitrile hydratase gene in Rhodococcus rhodochrous M8. FEMS Microbiol. Lett. 144: 191–195

    Google Scholar 

  • Prauser H (1976) Host-phage relationships in nocardioform organisms. In: Goodfellow M, Brownell GH & Serrano JA (Eds) The Biology of the Nocardiae (pp 206–284). Academic Press, London

    Google Scholar 

  • Prescott JF (1991) Rhodococcus equi: an animal and human pathogen. Clin. Microbiol. Rev. 4: 20–34.

    Google Scholar 

  • Quan S & Dabbs ER (1993) Nocardioform arsenic resistance plasmid characterization and improved Rhodococcus cloning vectors. Plasmid 29: 74–79

    Google Scholar 

  • Rådstr & #x00F6;m P, Sk & #x00F6;ld O, Swedberg G, Flensburg J, Roy PH & Sundstr & #x00F6;m L (1994) Transposon Tn5090 of plasmid R751, which carries an integron, is related to Tn 7, Mu, and the retroelements. J. Bacteriol. 176: 3257–3268

    Google Scholar 

  • Rainey FA, Burghardt J, Kroppenstedt RM, Klatte S & Stackebrandt E (1995) Phylogenetic analysis of the genera Rhodococcus and Nocardia and evidence for the evolutionary origin of the genus Nocardia from within the radiation of Rhodococcus species. Microbiology 141: 523–528

    Google Scholar 

  • Ramakrishnan L, Tran HT, Federspiel NA & Falkow S (1997) A crtB homolog essential for photochromogenicity in Mycobacterium marinum: isolation, characterization, and gene disruption via homologous recombination. J. Bacteriol. 179: 5862–868

    Google Scholar 

  • Rathbone DA, Holt PJ, Lowe CR & Bruce NC (1997) Molecular analysis of the Rhodococcus sp. strain H1 her gene and characterization of its product, a heroin esterase, expressed in Escherichia coli. Appl. Environ. Microbiol. 63: 2062–2066

    Google Scholar 

  • Roberts RJ & Macelis D (1997) REBASE-restriction enzymes and methylases. Nucleic Acids Res. 25: 248–262.

    Google Scholar 

  • Sander P, Meier A & B & #x00F6;ttger EC (1995) rpsL +: a dominant selectable marker for gene replacement in mycobacteria. Mol. Microbiol. 16: 991–1000

    Google Scholar 

  • Schreiner A, Fuchs K, Lottspeich F, Poth H & Lingens F (1991) Degradation of 2-methylaniline in Rhodococcus-rhodochrous — cloning and expression of 2 clustered catechol 2,3-dioxygenase genes from strain CTM. J. Gen. Microbiol. 137: 2041–2048

    Google Scholar 

  • Schupp R, H & #x00FC;tter R & Hopwood DA (1975) Genetic recombination in Nocardia mediterranei. J. Bacteriol. 121: 128–136

    Google Scholar 

  • Scott MA, Graham BS, Verall R, Dixon R, Schaffner W & Tham KY (1995) Rhodococcus equi — an increasingly recognised opportunist pathogen. Am. J. Clin. Pathol. 103: 649–655

    Google Scholar 

  • Sensfuss C, Reh M & Schlegel HG (1986) No correlation exists between the conjugative transfer of the autotrophic character and that of plasmids in Nocardia opaca strains. J. Gen. Microbiol. 132: 779–1007

    Google Scholar 

  • Shao ZQ & Behki R (1995) Cloning of the genes for degradation of the herbicides EPTC (S-ethyl dipropylthiocarbamate) and atrazine from Rhodococcus sp. strain TE1. Appl. Environ. Microbiol. 61: 2061–2065

    Google Scholar 

  • Shao ZQ & Behki R (1996) Characterization of the expression of the thcB gene, coding for a pesticide-degrading cytochrome P-450 in Rhodococcus strains. Appl. Environ. Microbiol. 62: 403–407

    Google Scholar 

  • Shao ZQ, Dick W A & Behki R M (1995a) An improved Escherichia coliRhodococcus shuttle vector and plasmid transformation in Rhodococcus spp. using electroporation. Lett. Appl. Microbiol. 21: 261–266

    Google Scholar 

  • Shao ZQ, Seffens W, Mulbry W & Behki R M (1995b) Cloning and expression of the s-triazine hydrolase gene (trzA) from Rhodococcus corallinus and development of Rhodococcus re-combinant strains capable of dealkylating and dechlorinating the herbicide atrazine. J. Bacteriol. 177: 5748–5755

    Google Scholar 

  • Shinohara M & Itoh T (1996) Specificity determinants in interaction of the initiator (Rep) proteins with the origins in the plasmids ColE2-P9 and ColE3-CA38 identified by chimera analysis. J. Mol. Biol. 257: 290–300

    Google Scholar 

  • Singer MEV & Finnerty WR (1988) Construction of an Escherichia coli-Rhodococcus shuttle vector and plasmid transformation in Rhodococcus species. J. Bacteriol. 170: 638–645

    Google Scholar 

  • Stark WM, Boocock MR & Sherratt DJ (1992) Catalysis by site-specific recombinases. Trends Genet. 8: 432–439

    Google Scholar 

  • Stolt P & Stoker NG (1996a) Functional definition of regions necessary for replication and incompatibility in the Mycobacterium fortuitum plasmid pAL5000. Microbiology 142: 2795–2802

    Google Scholar 

  • Stolt P & Stoker NG (1996b) Protein—DNA interactions in the ori region of the Mycobacterium fortuitum plasmid pAL5000. J. Bacteriol. 178: 6693–6700

    Google Scholar 

  • Stolt P & Stoker NG (1997) Mutational analysis of the regulatory region of the Mycobacterium plasmid pAL5000. Nucleic Acids Res. 25: 3840–3846

    Google Scholar 

  • Strohl W. R. (1992) Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res. 20: 961–974

    Google Scholar 

  • Sunairi M, Watanabe T, Oda H, Murooka H & Nakajima M (1993) Characterization of the genome of the Rhodococcus rhodochrous bacteriophage NJL. Appl. Environ. Microbiol. 59: 97–100

    Google Scholar 

  • Takai S (1997) Epidemiology of Rhodococcus equi infections: a review. Vet. Microbiol. 56: 167–176

    Google Scholar 

  • Takai S, Sekizaki T, Ozawa T, Sugawara T, Watanabe Y & Tsubaki S (1991) Association between a large plasmid and 15-kilodalton to 17-kilodalton antigens in virulent Rhodococcus equi. Infect. Immun. 59: 4056–4060

    Google Scholar 

  • Takai S, Watanabe Y, Ikeda T, Ozawa T, Matsukura S, Tamada Y, Tsubaki S & Sekizaki T (1993) Virulence-associated plasmids in Rhodococcus equi. J. Clin. Microbiol. 31: 1726

    Google Scholar 

  • Takai S, Sasaki Y, Ikeda T, Uchida Y, Tsubaki S & Sekizaki T (1994) Virulence of Rhodococcus equi isolates from patients with and without aids. J. Clin. Microbiol. 32: 457–462

    Google Scholar 

  • Takai S, Madarame H, Matsumoto C, Inoue M, Sasaki Y, Hasegawa Y, Tsubaki S & Nakane A (1995a) Pathogenesis of Rhodococcus equi infection in mice — roles of virulence plasmids and granulomagenic activity of bacteria. FEMS Immunol. Med.Microbiol. 11: 181–190

    Google Scholar 

  • Takai S, Imai Y, Fukunaga N, Uchida Y, Kamisawa K, Sasaki Y, Tsubaki S & Sekizaki T (1995b) Identification of virulenceassociated antigens and plasmids in Rhodococcus-equi from patients with AIDS. J. Infect. Dis. 172: 1306–1310

    Google Scholar 

  • Takechi S. & Itoh T (1995) Initiation of unidirectional ColE2 DNA replication by a unique priming mechanism. Nucleic Acids Res. 23: 4196–4201

    Google Scholar 

  • Takechi S, Matsui H & Itoh T (1995) Primer RNA synthesis by plasmid-specified Rep protein for initiation of ColE2 DNA replication. EMBO. 14: 5141–5147

    Google Scholar 

  • Tam AC, Behki RM & Kahn SU (1987) Isolation and characterisation of an EPTC-degrading Arthrobacter strain and evidence for plasmid-associated EPTC degradation. Appl. Environ. Microbiol. 53: 1088–1093

    Google Scholar 

  • Tamura T, Nagy I, Lupas A, Lottspeich F, Cejka Z, Schoofs G, Tanaka K, De Mot R & Baumeister W (1995) The first characterization of a eubacterial proteasome: the 20S complex of Rhodococcus. Curr. Biol. 5: 766–774

    Google Scholar 

  • Vereecke D (1997) Leafy gall induction by Rhodococcus fascians. PhD Thesis, University of Ghent, Belgium, 196 pp.

  • Vereecke D, Villarroel R, Vanmontagu M & Desomer J, (1994) Cloning and sequence-analysis of the gene encoding isocitrate lyase from Rhodococcus fascians. Gene: 145, 109–114

    Google Scholar 

  • Vieira J & Messing J (1982) The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19: 159–268

    Google Scholar 

  • Voeykova T, Tabakov V, Mkrtumyan N, Yanenko A & Ryabchenko L (1994) Conjugative transfer of plasmid pTO1 from Escherichia coli to Rhodococcus spp. Biotechnol. Lett. 16: 555–560

    Google Scholar 

  • Waksman SA (1950) The Actinomycetes. Chimica Botanica Company Waltham, Massachusetts, USA

    Google Scholar 

  • Wang Y, Garnon J, Labb & #x00E9; D, Bergeron H & Lau PCK (1995) Sequence and expression of the bpdC1C2BADE genes involved in the initial steps of biphenyl/chlorobiphenyl degradation by Rhodococcus sp. M5. Gene 164: 117–122

    Google Scholar 

  • Warhurst AM & Fewson CA (1994) Biotransformations catalyzed by the genus Rhodococcus. Crit. Rev. Biotechnol. 14: 29–73

    Google Scholar 

  • Williams DR & Thomas CM (1992) Active partitioning of bacterial plasmids. J. Gen. Microbiol. 138: 1–6

    Google Scholar 

  • Williams ST, Sharples GP, Serrano JA, Serrano AA & Lacey J (1976) The micromorpholpgy and fine structure of nocardioform organisms. In: Goodfellow M, Brownell GH & Serrano JA (Eds) The Biology of the Nocardiae (pp 103–140). Academic Press, London

    Google Scholar 

  • Wolf S, Nagy I, Lupas A, Pfeifer G, Cejka Z, M & #x00FC;ller S, Engel A, De Mot R & Baumeister W (1998) Characterization of ARC, a divergent member of the AAA ATPase family from Rhodococcus erythropolis. J. Mol. Biol. 277: 13–25

    Google Scholar 

  • Yoon JH, Lee JS, Shin YK, Park YH & Lee ST (1997) Reclassification of Nocaridioides simplex ATCC 13260, ATCC 19565, and ATCC 19566 as Rhodococcus erythropolis. Int. J. Syst. Bacteriol. 47: 904–907

    Google Scholar 

  • Zheng H, Thachuk-Saad O & Prescott JF (1997) Development of a Rhodococcus equi–Escherichia coli plasmid shuttle vector. Plasmid 38: 180–187

    Google Scholar 

  • Z & #x00FC;hl F, Tamura T, Dolenc I, Cejka Z, Nagy I, De Mot R & Baumeister W (1997) Subunit topology of the Rhodococcus proteasome. FEBS. Lett. 400: 83–90

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larkin, M.J., De Mot, R., Kulakov, L.A. et al. Applied aspects of Rhodococcus genetics. Antonie Van Leeuwenhoek 74, 133–153 (1998). https://doi.org/10.1023/A:1001776500413

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1001776500413

Navigation