Skip to main content
Log in

Demuškin Groups with Group Actions and Applications to Deformations of Galois Representations

  • Published:
Compositio Mathematica

Abstract

We determine the universal deformation ring, in the sense of Mazur, of a residual representation \(\bar \rho :G_K \to {GL}_{2} (k)\), where k is a finite field of characteristic p and K is a local field of residue characteristic p. As one might hope for, but is not proven in the global case, the deformation ring is a complete intersection, flat over W(k), with the exact number of equations given by the dimension of \(H^2 (G_K ,{ad}_{\bar \rho })\). We then go on to determine the ordinary locus inside the deformation space and, using ideas of Mazur, apply this to compare the universal and the universal ordinary deformation spaces. Provided that the universal ring for ordinary deformations with fixed determinant is finite flat over W(k), as was shown in many cases by Diamond, Fujiwara, Taylor–Wiles and Wiles, we show that the corresponding universal deformation ring – with no restriction of ordinariness or fixed determinant – is a complete intersection, finite flat over W(k) of the dimension conjectured by Mazur, provided that the restriction of \((\bar \rho )\) to the inertia subgroup is different from the inverse cyclotomic character.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Böckle, G.: Explicit universal deformations of even Galois representations, Accepted by Math. Nachr.

  2. Böckle, G.: A local-to-global principle for deformations of Galois representations, J. Reine Angew. Math. 509 (1999), 199-236.

    Google Scholar 

  3. Boston, N.: Explicit deformations of Galois representations, Invent. Math. 103 (1990), 181-196.

    Google Scholar 

  4. Boston, N.: Families of Galois representations-Increasing the ramification, Duke Math. J. 66 (3) (1992), 357-367.

    Google Scholar 

  5. Conrad, B.: Ramified deformation problems, Duke Math. J. 97 (3) (1999), 439-513.

    Google Scholar 

  6. Diamond, F.: On deformation rings and Hecke rings, Ann. of Math. 144 (1996), 137-166.

    Google Scholar 

  7. Demuškin, S.: On the maximal p-extension of a local field (Russian), Izv. Akad. Nauk, USSR. Math. Ser. 25 (1961), 329-346.

    Google Scholar 

  8. Demuškin, S.: On 2-extensions of a local field (Russian), Sibirsk. Mat. Z. 4 (1963), 951-955.

    Google Scholar 

  9. Fontaine, J.-M. and Mazur, B.: Geometric Galois representations, in: J. Coates (ed.), Elliptic Curves, Modular Forms and Fermat's Last Theorem, International Press, Cambridge.

  10. Fujiwara, K.: Deformation rings and Hecke algebras in the totally real case, Preprint, 9 July, 1996.

  11. Gouvêa, F. and Mazur, B.: On the density of modular representations, In: Computational Perspectives on Number Theory (Chicago; IL, 1998), AMS/IP Stud. Adv. Math. 7, Amer. Math. Soc., Providence, RI, 1998, pp. 127-142.

    Google Scholar 

  12. Hida, H.: Adjoint modular Selmer groups of several variables over totally real fields, Note of lectures given at Université de Paris-Nord, 17 June, 1997.

  13. Iwasawa, K.: On the Galois groups of local fields, Trans. Amer. Math. Soc. 80 (1955), 448-469.

    Google Scholar 

  14. Jannsen, U. and Wingberg, K.: Die Struktur der absoluten Galoisgruppe p-adischer Zahlkörper, Invent. Math. 70 (1982), 71-98.

    Google Scholar 

  15. Koch, H.: Ñber Darstellungssäume und die Struktur der multiplikativen Gruppe eines p-adischen Zahlkörpers, Math. Nachr. 29 (1965), 77-111.

    Google Scholar 

  16. Labute, J.: Classification of Demuškin groups, Canad. J.Math. 19 (1967) 106-132.

    Google Scholar 

  17. Lazard, M.: Sur les groupes nilpotents et les anneaux de Lie, Ann. Ecole Sup. Norm 71 (1954), 101-190.

    Google Scholar 

  18. MacLane, S.: Homology, Grundlehren Math. Wiss. 114, Springer-Verlag, New York, 1975.

    Google Scholar 

  19. Mazur, B.: Deforming Galois representations, in Galois Groups over ℚ, Springer-Verlag, New York, 1987.

    Google Scholar 

  20. Mazur, B.: Two-dimensional p-adic Galois representations unramified away from p, Compositio Math. 74 (1990), 115-133.

    Google Scholar 

  21. Mazur, B.: An 'infinite fern' in the universal deformation space of Galois representations, Proc. Journées Arithméthiques, Barcelona, 1995.

  22. Milne, J. S.: Arithmetic Duality Theorems, Perspect. Math. 1, Academic Press, Boston, MA, 1986.

    Google Scholar 

  23. R. Pink, Classification of pro-p subgroups of SL2 over a p-adic ring, where p is an odd prime, Compositio Math. 88 (1993), 251-264.

    Google Scholar 

  24. Ramakrishna, R.: On a variation of Mazur's deformation functor, Compositio Math. 87 (1993), 269-286.

    Google Scholar 

  25. Serre, J.-P.: Sur les représentations modulaires de degré 2 de Gal(ℚ/ ℚ), Duke Math. J. 54 (1987), 179-230.

    Google Scholar 

  26. Taylor, R. and Wiles, A.: Ring-theoretic properties of certain Hecke algebras, Ann. of Math. 141 (1995), 553-572.

    Google Scholar 

  27. Wiles, A.: Modular elliptic curves and Fermat's last theorem, Ann. of Math. 142 (1995), 443-551.

    Google Scholar 

  28. Wingberg, K.: Der Eindeutigkeitssatz für Demuškinformationen, Invent.Math. 70 (1982), 99-113.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böckle, G. Demuškin Groups with Group Actions and Applications to Deformations of Galois Representations. Compositio Mathematica 121, 109–154 (2000). https://doi.org/10.1023/A:1001746207573

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1001746207573

Navigation