Advertisement

Antonie van Leeuwenhoek

, Volume 74, Issue 1–3, pp 3–20 | Cite as

Rhodococcal systematics: problems and developments

  • Michael Goodfellow
  • Grace Alderson
  • Jongsik ChunEmail author
Article

Abstract

Various approaches that have been used in the development of a system of classification for the genus Rhodococcus are discussed. The application of chemotaxonomic, molecular systematic and numerical phenetic methods have greatly contributed to improvements in the systematics of rhodococci and related mycolic- acid containing actinomycetes. The genus currently encompasses twelve validly described species but improved diagnostic methods are needed to distinguish between them. In addition, evidence from 16S ribosomal RNA sequencing suggests that the genus is still heterogeneous.

Rhodococcus taxonomic history polyphasic taxonomy nomenclature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams JN & McClung NM (1960) Morphological studies in the genus Nocardia. V. Septation in Nocardia rubra and Jensenia canicruria. J. Bacteriol. 80: 281–282Google Scholar
  2. Adams JN & McClung NM (1962) Comparison of the developmental cycles of some members of the genus Nocardia. J. Bacteriol. 84: 206–216.Google Scholar
  3. Adams MM, Adams JN & Brownell GH (1970) The identification of Jensenia canicruria Bisett and Moore as a mating type of Nocardia erythropolis (Gray and Thornton) Waksman and Henrici. Int. J. Syst. Bacteriol. 20: 133–148Google Scholar
  4. Alshamaony L, Goodfellow M & Minnikin DE (1976a) Free mycolic acids as criteria in the classification of Nocardia and the & #x2018;rhodochrous & #x2019; complex. J. Gen. Microbiol. 92: 188–199Google Scholar
  5. Alshamaony L, Goodfellow M, Minnikin DE & Mordarska H (1976b) Free mycolic acids as criteria in the classification of Gordona and the & #x2018;rhodochrous & #x2019; complex. J. Gen. Microbiol. 92: 183–187Google Scholar
  6. Apajalahti JHA, K & #x00E4;rp & #x00E4;noja P & Salkinoja-Salonen MS (1986) Rhodococcus chlorophenolicus sp. nov., a chlorophenol-mineralising actinomycete. Int. J. Syst. Bacteriol. 36: 246–251Google Scholar
  7. Beard TM & Page MI (1998) Enantioselective biotransformations using rhodococci. Antonie van Leeuwenhoek 74: 99–106.Google Scholar
  8. Bell S, Philp JC, Christofi N & Aw DWJ (1992) Identification of Rhodococcus equi using the polymerase chain reaction. Lett. Appl. Microbiol. 23: 72–74Google Scholar
  9. Bell S, Philp JC, Aw DWJ & Christofi N (1998) A Review: The genus Rhodococcus. J. Appl. Microbiol. 85:195–210Google Scholar
  10. Bergey DH, Harrison FC, Breed RS, Hammer BW & Huntoon FM (1923) Bergey & #x2019;s Manual of Determinative Bacteriology, 1st Edition. The Williams & Wilkins Co., BaltimoreGoogle Scholar
  11. Bergey DH, Harrison FC, Breed RS, Hammer BW & Huntoon FM (1925) Bergey & #x2019;s Manual of Determinative Bacteriology, 2nd Edition. The Williams & Wilkins Co., BaltimoreGoogle Scholar
  12. Bergey DH, Harrison FC, Breed RS, Hammer BW & Huntoon FM (1930) Bergey & #x2019;s Manual of Determinative Bacteriology, 3rd Edition. The Williams & Wilkins Co., BaltimoreGoogle Scholar
  13. Bergey DH, Breed RS, Hammer BW, Huntoon FM, Murray EGD & Harrison FC (1934) Bergey & #x2019;s Manual of Determinative Bacteriology, 4th Edition. The Williams & Wilkins Co., BaltimoreGoogle Scholar
  14. Bergey DH, Breed RS, Murray EGD & Hitchens AP (1939) Bergey & #x2019;s Manual of Determinative Bacteriology, 5th Edition. The Williams & Wilkins Co., Baltimore.Google Scholar
  15. Bisset KA & Moore FW (1949) The relationship of certain branched bacterial genera. J. Gen. Microbiol. 3: 387–391Google Scholar
  16. Bisset KA & Moore FW (1950) Jensenia, a new genus of the Actinomycetales. J. Gen. Microbiol. 4: 280Google Scholar
  17. Blackall LL, Parlett JH, Hayward AC, Minnikin DE, Greenfield PF & Harbers AE (1989) Nocardia pinensis sp. nov, an actinomycete found in activated sludge foams in Australia. J. Gen. Microbiol. 135: 1547–1558Google Scholar
  18. Boiron P, Provost F & Dupont B (1993) Laboratory Methods for the Diagnosis of Nocardiosis. Institut Pasteur, ParisGoogle Scholar
  19. Bousfield IJ & Goodfellow M (1976) The & #x2018;rhodochrous & #x2019; complex and its relationships with allied taxa. In: Goodfellow M, Brownell JH & Serrano JA (Eds) The Biology of the Nocardiae (pp. 39–65). Academic Press, LondonGoogle Scholar
  20. Bradley SG (1971) Criteria for definition of Mycobacterium, Nocardia and the & #x2018;rhodochrous & #x2019; complex. Adv. Front. Pl. Sci. 28: 349–362Google Scholar
  21. Bradley SG (1973) Relationships among mycobacteria and nocardiae based on deoxyribonucleic acid reassociation. J. Bacteriol. 113: 645–651Google Scholar
  22. Bradley SG & Bond JS (1974) Taxonomic criteria for mycobacteria and nocardiae. Adv. Appl. Microbiol. 18: 131–190Google Scholar
  23. Breed RS, Murray EGD & Hitchens AP (Eds) (1948) Bergey & #x2019;s Manual of Determinative Bacteriology, 6th Edition. The Williams & Wilkins Co., BaltimoreGoogle Scholar
  24. Briglia M, Rainey FA, Stackebrandt E, Schraa G & Salkinoja-Salonen MS (1996) Rhodococcus percolatus sp. nov., a bacterium degrading 2,4,6-trichlorophenol. Int. J. Syst. Bacteriol. 46: 23–30Google Scholar
  25. Buchanan RE (1918) Studies in the nomenclature and classification of the bacteria. VIII. The subgroups of the genera of the Actinomycetales. J. Bacteriol. 3: 403–406Google Scholar
  26. Buchanan RE (1925) General Systematic Bacteriology. Williams & Wilkins Co., BaltimoreGoogle Scholar
  27. Bunch AW (1998) Biotransformation of nitriles by rhodococci. Antonie van Leeuwenhoek 74: 89–97.Google Scholar
  28. Cerbón J (1967) Taxonomic analysis of Nocardia. Rev. Lat. Am. Microbiol. Parasit. 9: 65–70Google Scholar
  29. Chun J & Goodfellow M (1995) A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int. J. Syst. Bacteriol. 45: 240–245Google Scholar
  30. Chun J, Kang SO, Hah YC & Goodfellow M (1996) Phylogeny of mycolic acid-containing actinomycetes. J. Ind. Microbiol. 17: 205–213Google Scholar
  31. Chun, J, Blackall LL, Kang S-O, Hah YC & Goodfellow M (1997) A proposal to reclassify Nocardia pinensis Blackall et al., as Skermania piniformis gen. nov., comb. nov. Int. J. Syst. Bacteriol. 47: 127–131Google Scholar
  32. Collins MD (1994) Isoprenoid quinones. In: Goodfellow M & O & #x2019;Donnell AG (Eds) Chemical Methods in Prokaryotic Systematics (pp. 265–309). John Wiley & Sons, Chichester.Google Scholar
  33. Collins MD & Jones D (1982) Lipid composition of Corynebacterium paurometabolum (Steinhaus). FEMS Microbiol. Lett. 13: 13–16Google Scholar
  34. Collins MD, Pirouz T, Goodfellow M & Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J. Gen. Microbiol. 100: 221–230Google Scholar
  35. Collins MD, Goodfellow M, Minnikin DE & Alderson G (1985) Menaquinone composition of mycolic acid-containing actinomycetes and some sporoactinomycetes. J. Appl. Bacteriol. 58: 77–86Google Scholar
  36. Collins MD, Howarth OW, Grund E & Kroppenstedt RM (1987) Isolation and structural determination of new members of the vitamin K series in Nocardia brasiliensis. FEMSMicrobiol. Lett. 41: 35–39Google Scholar
  37. Collins MD, Smida J, Dorsch M & Stackebrandt E (1988a) Tsukamurella gen nov harboring Corynebacterium paurometabolum and Rhodococcus aurantiacus. Int. J. Syst. Bacteriol. 38: 385–391Google Scholar
  38. Collins MD, Burton RA & Jones D (1988b) Corynebacterium amycolatum sp. nov. a new mycolic acid-less Corynebacterium species from human skin. FEMS Microbiol. Lett. 49: 349–352Google Scholar
  39. Colquhoun JA, Mexson J, Goodfellow M, Ward AC, Horikoshi K & Bull AT (1998) Novel rhodococci and other mycolate actinomycetes from the deep sea. Antonie van Leeuwenhoek 74: 27–40Google Scholar
  40. Colwell RR (1970a) Polyphasic taxonomy in bacteria. In: Iizuka H & Hasegawa T (Eds) Culture Collections of Microorganisms (pp. 421–436). University of Tokyo, TokyoGoogle Scholar
  41. Colwell RR (1970b) Polyphasic taxonomy of the genus Vibrio: Numerical taxonomy of Vibrio cholerae, Vibrio parahaemolyticus and related Vibrio species. J. Bacteriol. 104: 410–433Google Scholar
  42. Cronquist A (1964) The old systematics. In: Leone A (Ed) Taxonomic Behaviour and Serology. Ronald Press, New York.Google Scholar
  43. Cross T & Goodfellow M (1973) Taxonomy and classification of the actinomycetes. In: Sykes G and Skinner FA (Eds) Actinomycetales: Characteristics and Practical Importance (pp. 11–112). Academic Press, LondonGoogle Scholar
  44. Cummins CS & Harris H (1958) Studies on the cell wall composition and taxonomy of Actinomycetales and related groups. J. Gen. Microbiol. 18: 173–189Google Scholar
  45. Dabbs ER (1998) Cloning of genes that have environmental and clinical importance for rhodococci and related bacteria. Antonie van Leeuwenhoek 74: 155–168Google Scholar
  46. Davenport RJ, Elliott JN, Curtis TP & Upton J (1998) In situ detection of rhodococci associated with activated sludge foam. Antonie van Leeuwenhoek 74: 41–48Google Scholar
  47. Denome SA, Olson ES & Young KD (1993) Identification and cloning of genes involved in specific desulfurization of dibenzothiophene by Rhodococcus sp. strain IGTS8. Appl. Environ. Microbiol. 59: 2837–2843Google Scholar
  48. Dobson G, Minnikin DE, Minnikin SM, Parlett JH, Goodfellow M, Ridell M & Magnusson M (1985) Systematic analysis of complex mycobacterial lipids. In: Goodfellow M & Minnikin DE (Eds) Chemical Methods in Bacterial Systematics (pp. 237–265). Academic Press, LondonGoogle Scholar
  49. Embley TM & Stackebrandt E (1994) The molecular phylogeny and systematics of the actinomycetes. Ann. Rev. Microbiol. 48: 257–289Google Scholar
  50. Embley TM & Wait R (1994) Structural lipids of eubacteria In: Goodfellow M & O'Donnell AG (Eds) Chemical Methods in Prokaryotic Systematics (pp. 121–161). John Wiley & Sons, ChichesterGoogle Scholar
  51. Finnerty WR (1992) The biology and genetics of the genus Rhodococcus. Ann. Rev. Microbiol. 46: 193–218Google Scholar
  52. Fox GE, Wisotzkey JD & Jurtshuk P., Jr. (1992) How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Bacteriol. 42: 166–170Google Scholar
  53. Funke G, Stubbs S, Altwegg M, Carlotti A & Collins MD (1994) Turicella otitidis gen. nov., sp. nov., a coryneform bacterium isolated from patients with otitis media. Int. J. Syst. Bacteriol. 44: 270–273Google Scholar
  54. Goodfellow G (1971) Numerical taxonomy of some nocardioform bacteria. J. Gen. Microbiol. 69: 33–80Google Scholar
  55. Goodfellow M (1984) Reclassification of Corynebacterium fascians (Tilford) Dowson in the genus Rhodococcus, as Rhodococcus fascians comb. nov. Syst. Appl. Microbiol. 5: 225–229Google Scholar
  56. Goodfellow M (1989) Genus Rhodococcus Zopf 1891, 28AL. In: Williams ST, Sharpe ME & Holt JG (Eds) Bergey & #x2019;s Manual of Systematic Bacteriology, Volume 4 (pp. 2362–2371). Williams & Wilkins, BaltimoreGoogle Scholar
  57. Goodfellow M (1996) Actinomycetes: Actinomyces, Actinomadura, Nocardia, Streptomyces and related genera. In: Collee JG, Fraser AG, Marmion BP & Simmons A (Eds) Mackie & McCartney Practical Medical Microbiology (pp. 343–359). Churchill Livingston, EdinburghGoogle Scholar
  58. Goodfellow M & Alderson G (1977) The actinomycete-genus Rhodococcus: a home for the & #x2018;rhodochrous & #x2019; complex. J. Gen. Microbiol. 100: 99–122Google Scholar
  59. Goodfellow M & Magee JG (1997) Taxonomy of mycobacteria. In: Gangadharam PRJ & Jenkins PA (Eds) Mycobacteria. I. Basic Aspects. (pp. 1–71). International Thomson Publishing, New YorkGoogle Scholar
  60. Goodfellow M & Minnikin DE (1980) Definition of the genus Mycobacterium vis a vis other taxa. In: Kubica GP, Wayne LG & Good LS (Eds) 1954 to 1979: Twenty-five Years of Mycobacterial Taxonomy (pp. 115–130). U.S. Department of Health Education and Welfare, Center for Disease Control, AtlantaGoogle Scholar
  61. Goodfellow M & O & #x2019;Donnell AG (1993) Roots of bacterial systematics. In: Goodfellow M and O & #x2019;Donnell AG (Eds) Handbook of New Bacterial Systematics (pp. 3–54). Academic Press, LondonGoogle Scholar
  62. Goodfellow M & Orchard VA (1974) Antibiotic sensitivity of some nocardioform bacteria and its value as a criterion for taxonomy. J. Gen. Microbiol. 83: 375–387Google Scholar
  63. Goodfellow M, Fleming A & Sackin MJ (1972) Numerical classification of & #x2018;Mycobacterium & #x2019; rhodochrous and Runyon & #x2019;s group IV mycobacteria. Int. J. Syst. Bacteriol. 22: 81–96Google Scholar
  64. Goodfellow M, Lind A, Mordarska H, Pattyn S & Tsukamura M (1974) A co-operative numerical analysis of cultures considered to belong to the & #x2018;rhodochrous & #x2019; taxon. J. Gen. Microbiol. 85: 291–302Google Scholar
  65. Goodfellow M, Orlean PAB, Collins MD, Alshamaony L & Minnikin DE (1978) Chemical and numerical taxonomy as some strains received as Gordona aurantiaca. J. Gen. Microbiol. 109: 57–68Google Scholar
  66. Goodfellow M, Weaver CR & Minnikin DE (1982) Numerical classification of some rhodococci, corynebacteria and related organisms. J. Gen. Microbiol. 128: 731–745Google Scholar
  67. Goodfellow M, Thomas EG, Ward AC & James AL (1990) Classification and identification of rhodococci. Zbl. Bakt. Ser. A 274: 299–315Google Scholar
  68. Goodfellow M, Zakrzewska-Czerwinska J, Thomas EG, Mordarski M, Ward AC & James AL (1991) Polyphasic taxonomic study of the genera Gordona and Tsukamurella including the description of Tsukamurella wratislaviensis. Zbl. Bakt. Ser. A 275: 162–178Google Scholar
  69. Goodfellow M, Chun, J, Atalan E & Sanglier JJ (1994) In: Priest FG, Ramos-Cormenzana A & Tindall BJ (Eds) Bacterial Diversity and Systematics. Plenum Press, New York.Google Scholar
  70. Goodfellow M, Manfio GP & Chun J (1997) Towards a practical species concept for cultivable bacteria. In: Claridge MF, Dawah HA & Wilson MR (Eds) Species: The Units of Biodiversity (pp. 25–59). Chapman & Hall, London.Google Scholar
  71. Gordon RE (1966) Some strains in search of a genus—Corynebacterium, Mycobacterium, Nocardia or what? J. Gen. Microbiol. 43: 329–343Google Scholar
  72. Gordon RE (1967) The taxonomy of soil bacteria. In: Gray TRG & Parkinson D (Eds) The Ecology of Soil Bacteria (pp. 293–321). Liverpool University Press, Liverpool.Google Scholar
  73. Gordon RE & Mihm JM (1957) A comparative study of some strains received as nocardiae. J. Bacteriol. 73: 15–27Google Scholar
  74. Gordon RE & Mihm JM (1959) A comparison of four species of mycobacteria. J. Gen. Microbiol. 21: 736–748Google Scholar
  75. Gordon RE & Mihm JM (1961) The specific identity of Jensenia canicruria. Can. J. Microbiol. 7: 108–110Google Scholar
  76. Gordon RE & Smith MM (1953) Rapidly growing acid-fast bacteria. I. Species description of Mycobacterium phlei Lehmann and Neumann and Mycobacterium smegmatis (Trevisan) Lehmann and Neumann. J. Bacteriol. 66: 41–48Google Scholar
  77. Gordon RE & Smith MM (1955) Proposed group of characters for the separation of Streptomyces and Nocardia. J. Bacteriol. 69: 147–150Google Scholar
  78. Gordon, RE, Barnett DA, Handerhan, JE & Pang CH-N (1974) Nocardia coeliaca, Nocardia autotrophica and the nocardin strain. Int. J. Syst. Bacteriol. 24: 54–63Google Scholar
  79. Gray PHH (1928) The formation of indigotin from indol by soil bacteria. Proc. R. Soc. B 102: 263–280Google Scholar
  80. Gray PHH & Thornton HG (1928) Soil bacteria that decompose certain aromatic compounds. Zentbl. Bakt. Parasit Kde (Abt. II) 73: 74–96Google Scholar
  81. Grzeszik C, Lubbers M, Reh M & Schlegel HG (1997) Genes encoding the NAD-reducing hydrogenase of Rhodococcus opacus MR11. Microbiology 143: 1271–1286Google Scholar
  82. H & #x00E4;ggblom MM, Nohynek LJ, Palleroni J, Kronqvist K, Nurmiaho-Lassila EL, Salkinoja-Salonen MS, Klatte S & Kroppenstedt RM (1994) Transfer of polychlorophenol-degrading Rhodococcus chlorophenolicus (Apajalahti et al., 1996) to the genus Mycobacterium as Mycobacterium chlorophenolicum comb. nov. Int. J. Syst. Bacteriol. 44: 485–493Google Scholar
  83. Harrison FC (1929) The discoloration of halibut. Can. J. Res. 1: 214–239Google Scholar
  84. Hefferan M (1904) A comparative and experimental study of bacilli producing red pigment. Zentbl. Bakt. Parasit. Kde (Abt. II) 73: 74–96Google Scholar
  85. Helmke E & Weyland H (1984). Rhodococcus marinonascens sp. nov. an actinomycete from the sea. Int. J. Syst. Bacteriol. 34: 127–138Google Scholar
  86. Hillis DM, Allard W & Miyamoto MM (1993) Analysis of DNA sequence data: phylogenetic inference. Methods Enzymol. 224: 456–487Google Scholar
  87. Howarth OW, Grund E & Kroppenstedt RM (1986) Structural determination of a new naturally occurring cyclic vitamin K. Biochem. Biophys. Res. Comm. 140: 916–923Google Scholar
  88. Hughes, J, Armitage YC & Symes KC (1998) Application of the whole cell rhodococcal biocatalysts in acrylic polymer manufacture. Antonie van Leeuwenhoek 74: 107–118Google Scholar
  89. Hyman IS & Chaparas SD (1977) A comparative study of the & #x2018;rhodochrous & #x2019; complex and related taxa by delayed type skin reactions on guinea pigs and by polyacrylamide gel electrophoresis. J. Gen. Microbiol. 100: 363–371Google Scholar
  90. Jensen HL (1931) Contributions to our knowledge of the Actinomycetales. II. The definition and subdivision of the genus Actinomyces with a preliminary account of Australian soil actinomycetes. Proc. Linn. Soc. N.S.W. 56: 345–370Google Scholar
  91. Jensen HL (1952) The coryneform bacteria. Ann. Rev. Microbiol. 6: 77–90Google Scholar
  92. Jones D (1975) A numerical taxonomic study of coryneform and related bacteria. J. Gen. Microbiol. 87: 52–96Google Scholar
  93. Klatte S, Rainey FA & Kroppenstedt RM (1994a) Transfer of Rhodococcus aichiensis Tsukamura 1982 and Nocardia amarae Lechevalier and Lechevalier 1974 to the genus Gordona as Gordona aichiensis comb. nov. and Gordona amarae comb. nov. Int. J. Syst. Bacteriol. 44: 769–773Google Scholar
  94. Klatte S, Jahnke K-D, Kroppenstedt RM, Rainey F & Stackebrandt E (1994b) Rhodococcus luteus is a later subjective synonym of Rhodococcus fascians. Int. J. Syst. Bacteriol. 44: 627–630Google Scholar
  95. Klatte S, Kroppenstedt RM & Rainey FA (1994c) Rhodococcus opacus sp. nov., an unusual nutritionally versatile Rhodococcus species. System. Appl. Microbiol. 17: 355–360Google Scholar
  96. Kruse W (1896) Systematik der Streptothrickeen und Bakterien. In Fl & #x00FC;gge, C. (Ed.), Die Mikroorganismen, Vol. 2 (pp. 48–66). F.C.W. Vogel, LeipzigGoogle Scholar
  97. Kubica GP, Baess I, Gordon RE, Jenkins PA, Kwapinski JBG, Mc-Durmont C, Pattyn SR, Saito H, Silcox V, Stanford JL, Takeya K & Tsukamura M (1972) A cooperative numerical analysis of the rapidly growing mycobacteria. J. Gen. Microbiol. 73: 55–70Google Scholar
  98. Lang S & Philp JC (1998) Surface-active lipids in rhodococci. Antonie van Leeuwenhoek 74: 59–70Google Scholar
  99. Lasker BA, Brown JM & McNeil MM (1992) Identification and epidemiological typing of clinical and environmental isolates of the genus Rhodococcus with use of a digoxigenin-labelled rDNA gene probe. Clin. Infect. Dis. 15: 223–233Google Scholar
  100. Lechevalier MP & Lechevalier H (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int. J. Syst. Bacteriol. 20: 435–443Google Scholar
  101. Lechevalier MP & Lechevalier H (1974) Nocardia amarae sp. nov., an actinomycete common in foaming activated sludge. Int. J. Syst. Bacteriol. 24: 278–288Google Scholar
  102. Lechevalier MP, DeBièvre C & Lechevalier H (1977) Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem. Syst. Ecol. 5: 249–260Google Scholar
  103. Locci R (1976) Developmental micromorphology of actinomycetes. In Arai, T. (Ed.) Actinomycetes: The Boundary Micro-organisms (pp. 249–297). University Park Press, BaltimoreGoogle Scholar
  104. Locci R (1981) Micromorphology and development of actinomycetes. Zbl. Bakt. (Abt. I) Orig. Suppl. 11: 119–130Google Scholar
  105. Locci R & Sharples GP (1984) Micromorphology. In: Goodfellow M, Mordarski M & Williams ST (Eds.), The Biology of Actinomycetes (pp. 165–199). Academic Press, LondonGoogle Scholar
  106. Magnusson H (1923) Spezifische infektiose Pneumonie beim Fohlen. Ein neuer Eitererreger beim Pferd. Arch. wiss. prakt. Tierheilk. 50: 22–38Google Scholar
  107. Magnusson M (1962) Specificity of sensitins. III. Further studies on guinea pigs with sensitins of various species of Mycobacterium and Nocardia. Am. Rev. Resp. Dis. 86: 395–404Google Scholar
  108. McClung NM (1974) Family VI. Nocardiaceae Castellani and Chalmers 1919, 1040. In: Buchanan RE & Gibbons NE (Eds.) Bergey & #x2019;s Manual of Determinative Bacteriology, 8th edn. (pp. 726–746). Williams & Wilkins, BaltimoreGoogle Scholar
  109. McNeil MM & Brown JM (1994) The medically important aerobic actinomycetes: epidemiology and microbiology. Clin.Microbiol. Rev. 7: 357–417Google Scholar
  110. Manion RE, Bradley SG, Zinneman HH & Hall WH (1964) Interrelationships among mycobacteria and nocardiae. J. Bacteriol. 87: 1056–1059Google Scholar
  111. Martinez-Murcia AJ, Benllock AJ & Collins MD (1992) Phylogenetic interrelationships of members of the genera Aeromonas and Plesiomonas as determined by 16S ribosomal DNA sequencing: Lack of congruence with results of DNA:DNA hybridization. Int. J. Syst. Bacteriol. 42: 412–421Google Scholar
  112. Metcalf G & Brown M (1957) Nitrogen fixation by new species of Nocardia. J. Gen. Microbiol. 17: 567–572Google Scholar
  113. Minnikin DE & Goodfellow M (1980) Lipid composition in the classification and identification of acid-fast bacteria. In: Goodfellow, M. & Board, R.G. (Eds.) Microbiological Classification and Identification (pp. 189–256). Academic Press, LondonGoogle Scholar
  114. Minnikin DE & Goodfellow M (1981) Lipids in the classification of actinomycetes. Zbl. Bakt. Suppl. 11: 99–109Google Scholar
  115. Minnikin DE, Alshamaony L & Goodfellow M (1975) Differentiation of Mycobacterium, Nocardia and related taxa by thin layer chromatographic analysis of whole-organism methanolysates. J. Gen. Microbiol. 88: 200–204Google Scholar
  116. Minnikin DE, Minnikin SM, Hutchinson IG, Goodfellow M & Grange JM (1984a) Mycolic acid patterns of representative strains of Mycobacterium fortuitum, Mycobacterium peregrinum and Mycobacterium smegmatis. J. Gen.Microbiol. 130: 363–367Google Scholar
  117. Minnikin DE, Minnikin SM, Parlett JH, Goodfellow M & Magnusson M (1984b) Mycolic acid patterns of some species of Mycobacterium. Arch. Microbiol. 139: 225–231Google Scholar
  118. Minnikin DE, Dobson G, Goodfellow M, Draper P & Magnusson M (1985) Quantitative comparison of the mycolic and fatty acid composition of Mycobacterium leprae and Mycobacterium gordonae. J. Gen. Microbiol. 131: 2013–2021Google Scholar
  119. Molisch H (1907) Die Purpurbakterien nach neueren Untersuchungen. Gustav Fischer Verlag, JenaGoogle Scholar
  120. Mordarski M, Szyba K, Pulverer G & Goodfellow M (1976) Deoxyribonucleic acid reassociation in the classification of the & #x2018;rhodochrous & #x2019; complex and allied taxa. J. Gen. Microbiol. 94: 235–245Google Scholar
  121. Mordarski M, Goodfellow M, Szyba K, Pulverer G & Tkacz A (1977) Classification of the & #x2018;rhodochrous & #x2019; complex and allied taxa based upon deoxyribonucleic and reassociation. Int. J. Syst. Bacteriol. 27: 31–38Google Scholar
  122. Mordarski M, Goodfellow M, Tkacz A, Pulverer G & Schaal KP (1980a) Ribosomal ribonucleic acid similarities in the classification of Rhodococcus and related taxa. J. Gen. Microbiol. 118: 313–319Google Scholar
  123. Mordarski M, Goodfellow M, Szyba K, Tkacz A, Pulverer G & Schaal KP (1980b) Deoxyribonucleic acid reassociation in the classification of the genus Rhodococcus. Int. J. Syst. Bacteriol. 30: 521–527Google Scholar
  124. Morton A C, Baseggio N, Peters M A & Browning G F (1998) Diversity of isolates of Rhodococcus equi from Australian thoroughbred horse farms. Antonie van Leeuwenhoek 74: 21–25Google Scholar
  125. Nesterenko OA, Nogina TM, Kasumova SA, Kvasnikov EI & Batrakov SG (1982) Rhodococcus luteus nom. nov. and Rhodococcus maris nom. nov. Int. J. Syst. Bacteriol. 32: 1–14Google Scholar
  126. Ochi K (1992) Electrophoretic heterogeneity of ribosomal protein AT-L30 among actinomycete genera. Int. J. Syst. Bacteriol. 42: 144–150Google Scholar
  127. O'Donnell AG, Embley TM & Goodfellow M (1993) Future of bacterial systematics. In: Goodfellow M & O & #x2019;Donnell AG (Eds) Handbook of Bacterial Systematics (pp. 513–524). Academic Press, LondonGoogle Scholar
  128. #x00D8;rskov J (1923) Morphology of the Ray Fungi. Levin & Munksgaard, CopenhagenGoogle Scholar
  129. Overbeck A (1891) Zur Kenntnis der Fettfarbstoff—Production bei Spaltpilzen. Nov. Acta Leopold. 55: 399–416Google Scholar
  130. Pascual C, Lawson PA, Farrow JAE, Gimenez MN & Collins MD (1995) Phylogenetic analysis of the genus Corynebacterium based on 16S rRNA gene sequences. Int. J. Syst. Bacteriol. 45: 724–728Google Scholar
  131. Phillips NC (1953) Characterization of the soil globiforme bacteria. Iowa St. Coll. J. Sci. 27: 240–241Google Scholar
  132. Pietkiewicz D, Andrzejewski J, Manowska W & Bogunowicz A (1974) Nocardia pellegrini. III. Versuch einer Phagentypisiering. Zentbl. Bakt. ParasitKde. (Abt. I) 231: 214–222Google Scholar
  133. Prescott JF (1991) Rhodococcus equi: an animal and human pathogen. Clin. Microbiol. Rev. 4: 20–34Google Scholar
  134. Rainey FA, Burghardt J, Kroppenstedt RM, Klatte S & Stackebrandt E (1995a) Phylogenetic analysis of the genera Rhodococcus and Nocardia and evidence for the evolutionary origins of the genus Nocardia from within the radiation of Rhodococcus species. Microbiology 141: 523–528Google Scholar
  135. Rainey FA, Klatte S, Kroppenstedt RM & Stackebrandt E (1995b) Dietzia, a new genus including Dietzia maris comb. nov., formerly Rhodococcus maris. Int. J. Syst. Bacteriol. 45: 32–36Google Scholar
  136. Rainey FA, Burghardt J, Kroppenstedt R, Klatte S & Stackebrandt E (1995c) Polyphasic evidence for the transfer of Rhodococcus roseus to Rhodococcus rhodochrous. Int. J. Syst. Bacteriol. 45: 101–103Google Scholar
  137. Ratledge C & Patel PV (1976) The isolation, properties and taxonomic relevance of lipid-soluble, iron-binding compounds (the nocobactins) from Nocardia. J. Gen. Microbiol. 93: 141–152Google Scholar
  138. Ridell M & Norlin M (1973) Serological study of Nocardia by using mycobacterial precipitation reference systems. J. Bacteriol. 113: 1–7Google Scholar
  139. Riegel P, Kamne-Fotso MV, De Briel D, Pr & #x00E9;vost G, Jehl F, Pi#x00E9;mont Y & Monteil H (1994) Rhodococcus chubuense Tsukamura 1982 is a later subjective synonym of Gordona sputi (Tsukamura 1978) Stackebrandt 1989 comb. nov. Int. J. Syst. Bacteriol. 44: 764–768Google Scholar
  140. Rogall T, Wolters T, Flohr T & B & #x00F6;ttger EC (1990) Towards a phylogeny and definition of species at the molecular level within the genus Mycobacterium. Int. J. Syst. Bacteriol. 40: 323–330Google Scholar
  141. Ruimy R, Boiron P, Boivin V & Christen R (1994) A phylogeny of the genus Nocardia deduced from the analysis of small-subunit ribosomal DNA sequences including transfer of Nocardia amarae to the genus Gordona as Gordona amarae comb. nov. FEMS Microbiol. Lett. 123: 261–268Google Scholar
  142. Ruimy R, Riegel P, Boiron P, Monteil H & Christen R (1995) Phylogeny of the genus Corynebacterium deduced from analyses of small-subunit ribosomal DNA sequences. Int. J. Syst. Bacteriol. 45: 740–746Google Scholar
  143. Runyon EH, Wayne LG & Kubica GP (1974) Family II. Mycobacteriaceae Chester 1897, 63. In: Buchanan RE & Gibbons NE (Eds.) Bergey & #x2019;s Manual of Determinative Bacteriology, 8th edn. (pp. 681–701). Williams & Wilkins, BaltimoreGoogle Scholar
  144. Schleifer KH & Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36: 407–477Google Scholar
  145. Schuppler M, Mertens F, Sch & #x00F6;n G & G & #x00F6;bel UB (1995) Molecular characterization of nocardioform actinomycetes in activated sludge by 16S rRNA analysis. Microbiology 141: 513–521Google Scholar
  146. Schuppler M, Wagner M, Sch & #x00F6;n G & G & #x00F6;bel UB (1998) In situ identification of nocardioform actinomycetes in activated sludge using fluorescent rRNA-target oligonucleotide probes. Microbiology 144: 249–259Google Scholar
  147. Serrano JA, Tablante RV, de Serrano AA, de San Blas GC & Imaeda T (1972) Physiological, chemical and ultrastructural characteristics of Corynebacterium rubrum. J. Gen. Microbiol. 70: 339–349Google Scholar
  148. Skerman VBD, McGowan V & Sneath PHA (1980) Approved Lists of Bacterial Names. Int. J. Syst. Bacteriol. 30: 225–420Google Scholar
  149. Sneath PHA (1962) Construction of taxonomic groups. Symp. Soc. Gen. Microbiol. 12: 287–332Google Scholar
  150. S & #x00F6;hngen NL (1913) Benzin, Petroleum, Paraffin & #x00F6;l und Paraffin als Kohlenstoff —und Energiequelle f & #x00FC;r Mikroben. Zbl. Bakt (Abt. I) 37: 595–609Google Scholar
  151. Stackebrandt E & Goebel BM (1994) Taxonomic note: A place for DNA:DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44: 486–489Google Scholar
  152. Stackebrandt E, Smida J & Collins MD (1988) Evidence of phylogenetic heterogeneity within the genus Rhodococcus: Revival of the genus Gordona (Tsukamura). J. Gen. Appl. Microbiol. 34: 341–348Google Scholar
  153. Stackebrandt E, Rainey FA & Ward-Rainey NL (1997) Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int. J. Syst. Bacteriol. 47: 479–491Google Scholar
  154. Stahl DA & Urbance JW (1990) The division between fastand slow-growing species corresponds to natural relationships among the mycobacteria. J. Bacteriol. 172: 116–124Google Scholar
  155. Stange RR Jr, Jeffares D, Young C, Scott DB, Eason JR & Jameson PE (1996) PCR amplification of the fas-1 gene for the detection of virulent strains of Rhodococcus fascians. Pl. Path. 45: 407–417Google Scholar
  156. Steinhaus EA (1941) A study of the bacteria associated with thirty species of insects. J. Bacteriol. 42: 757–790Google Scholar
  157. Stoecker MA, Herwig RP & Staley JT (1994) Rhodococcus zopfii sp. nov., a toxicant-degrading bacterium. Int. J. Syst. Bacteriol. 44: 106–110Google Scholar
  158. Sutcliffe IC (1998) Cell envelope composition and organisation in the genus Rhodococcus. Antonie van Leeuwenhoek 74: 49–58Google Scholar
  159. Suzuki K, Goodfellow M & O & #x2019;Donnell AG (1993) Cell envelopes and classification. In: Goodfellow M & O & #x2019;Donnell AG (Eds) Handbook of New Bacterial Systematics (pp. 195–250). Academic Press, LondonGoogle Scholar
  160. Swoffold DL & Olsen GJ (1990) Phylogenetic reconstruction. In: Hillis D & Moritz C (Eds) Molecular Systematics (pp. 411–501). Sinauer Associates, Sunderland, USAGoogle Scholar
  161. Tacquet A, Plancot MT, Debruyne J, Devulder B, Joseph M & Losfeld J (1971) & #x00C9;tude preliminaires sur la classification num & #x00E9;rique des mycobact & #x00E9;ries et des nocardias. I. Relations taxonomique entre Mycobacterium rhodochrous, Mycobacterium pellegrino et les genres Mycobacterium et Nocardia. Ann. Inst. Pasteur, Paris 22: 121–135Google Scholar
  162. Tomioka N, Uchiyama H & Yagi O (1994) Cesium accumulation and growth characteristics of Rhodococcus erythropolis CS98 and Rhodococcus sp. strain CS402. Appl. Environ. Microbiol. 60: 2227–2231Google Scholar
  163. Tsukamura M (1969) Numerical taxonomy of the genus Nocardia. J. Gen. Microbiol. 56: 265–287Google Scholar
  164. Tsukamura M (1971) Proposal of a new genus, Gordona, for slightly acid-fast organisms occurring in sputa of patients with pulmonary disease and in soil. J. Gen. Microbiol. 68: 15–26Google Scholar
  165. Tsukamura M (1973) A taxonomic study of strains received as & #x2018;Mycobacterium & #x2019; rhodochrous. Description of Gordona rhodochroa (Zopf; Overbeck; Gordon & Mihm) Tsukamura comb. nov. Jap. J. Microbiol. 17: 189–197Google Scholar
  166. Tsukamura M (1974) A further numerical taxonomic study of the rhodochrous group. Jap. J. Microbiol. 18: 37–44Google Scholar
  167. Tsukamura M (1975) Numerical analysis of the relationship between the Mycobacterium rhodochrous group and Nocardia by use of hypothetical median organisms. Int. J. Syst. Bacteriol. 25: 329–335Google Scholar
  168. Tsukamura M (1978) Numerical classification of Rhodococcus (formerly Gordona) organisms recently isolated from sputa of patients: Description of Rhodococcus sputi Tsukamura sp. nov. Int. J. Syst. Bacteriol. 28: 169–181Google Scholar
  169. Tsukamura M (1982) Numerical analysis of the taxonomy of nocardiae and rhodococci. Division of Nocardia asteroides sensu stricto into two species and descriptions of Nocardia paratuberculosis sp. nov. Tsukamura (formerly the Kyoto-1 group of Tsukamura, Nocardia nova sp. nov. Tsukamura, Rhodococcus aichiensis sp. nov. Tsukamura, Rhodococcus chubuensis sp. nov. Tsukamura, and Rhodococcus obuensis sp. nov. Tsukamura. Microbiol. Immunol. 26: 1101–1119Google Scholar
  170. Tsukamura M & Mizuno S (1971) A new species Gordona aurantiaca occurring in sputa of patients with pulmonary disease. Kekkaku 46: 93–98Google Scholar
  171. Tsukamura M & Yano I (1985) Rhodococcus sputi sp. nov., nom. rev., and Rhodococcus aurantiacus sp. nov., nom. rev. Int. J. Syst. Bacteriol. 35: 364–368Google Scholar
  172. Tsukamura M, Mizuno S & Murata H (1975) Numerical taxonomy study of the taxonomic position of Nocardia rubra reclassified as Gordona lentifragmenta Tsukamura nom. nov. Int. J. Syst. Bacteriol. 25: 377–382Google Scholar
  173. Tsukamura M, Mizuno S, Tsukamura S & Tsukamura J (1979) Comprehensive numerical classification of 369 strains of Mycobacterium, Rhodococcus and Nocardia. Int. J. Syst. Bacteriol. 29: 110–129Google Scholar
  174. Tsukamura M, Yano I, Kudo T & Miyama A (1991) Rhodococcus roseus sp. nov., nom. rev. Int. J. Syst. Bacteriol. 41: 385–389Google Scholar
  175. Turfitt GE (1944) Microbiological agencies in the degradation of steroids. The cholesterol-decomposing organisms of soil. J. Bacteriol. 47: 487–493Google Scholar
  176. Uchida K & Aida K (1979) Taxonomic significance of cell wall acyl type in CorynebacteriumMycobacteriumNocardia group by a glycolate test. J. Gen. Appl. Microbiol. 25: 169–183Google Scholar
  177. Vandamme P, Pot B, Gillis P, De Vos P, Kersters K & Swings J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol. Rev. 60: 407–438Google Scholar
  178. Vantomme R, Elia S, Swings J & De Ley J (1982) Corynebacterium fascians (Tilford 1936) Dowson 1942, the causal agent of leafy gall on lily crops in Belgium. Parasitica 38: 183–192Google Scholar
  179. Waksman SA & Henrici AT (1943) The nomenclature and classification of the actinomycetes. J. Bacteriol. 46: 337–341Google Scholar
  180. Waksman SA & Henrici AT (1948) Family II. Actinomycetaceae Buchanan. In: Breed RS, Murray EGD & Hitchens AP (Eds.) Bergey & #x2019;s Manual of Determinative Bacteriology, 6th edn. (pp. 892–928). The Williams & Wilkins Co., BaltimoreGoogle Scholar
  181. Warhurst AW & Fewson CA (1994) Biotransformations catalyzed by the genus Rhodococcus. Crit. Rev. Biotechnol. 14: 29–73Google Scholar
  182. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler P, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP & Tr & #x00FC;per HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37: 463–464Google Scholar
  183. Wayne LG, Good RC, B & #x00F6;ttger EC, Butler R, Dorsch M, Ezaki T, Gross W, Jonas V, Kilburn J, Kirschner P, Krichevsky MI, Ridell M, Shinnick TM, Springer B, Stackebrandt E, Tarnok I, Tarnok Z, Tasaka H, Vincent V, Warren NG, Knott CA & Johnson R (1996) Semantide-and chemotaxonomy-based analysis of some problematic phenotypic clusters of slowly growing mycobacteria, a cooperative study of the International Working Group on Mycobacterial Taxonomy. Int. J. Syst. Bacteriol. 46: 280–297Google Scholar
  184. Williams ST, Sharples GP, Serrano JA, Serrano AA & Lacey J (1976) The micromorphology and fine structure of nocardioform organisms. In: Goodfellow M, Brownell JH & Serrano JA (Eds.) The Biology of the Nocardiae (pp. 102–140). Academic Press, LondonGoogle Scholar
  185. Winslow CEA & Rogers AF (1906) A statistical study of generic characters in the Coccaceae. J. Infect. Dis. 3: 485–546Google Scholar
  186. Woese CR (1987) Bacterial evolution. Microbiol. Rev. 51: 221–271Google Scholar
  187. Woese CR, Kandler O & Wheelis ML (1990) Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci., USA, 87: 4576–4579Google Scholar
  188. Yassin AF, Rainey FA, Brzezinka H, Burghardt J, Lee HJ & Schaal KP (1995) Tsukamurella inchonensis sp. nov. Int. J. Syst. Bacteriol. 45: 522–527Google Scholar
  189. Yassin AF, Rainey FA, Burghardt J, Brzezinka, Schmitt S, Seifert P, Zimmerman O, Mauch H, Gierth D, Lux I & Schaal KP (1997) Tsukamurella tyrosinosolvens sp. nov. Int. J. Syst. Bacteriol. 47: 607–614Google Scholar
  190. Zakrzewska-Czerwinska J, Mordarski M & Goodfellow M (1988) DNA base composition and homology values in the classification of some Rhodococcus species. J. Gen. Microbiol. 134: 2807–2813Google Scholar
  191. Zopf W (1891) Ueber Ausscheidung von Fettfarbstoffen (Lipochromen) seitens gewisser Spaltpilzes. Ber. Deut. bot. Gesell. 9: 22–28Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Michael Goodfellow
    • 1
  • Grace Alderson
    • 2
  • Jongsik Chun
    • 3
    Email author
  1. 1.Department of Agricultural and Environmental ScienceUniversity of NewcastleNewcastle upon TyneU.K.
  2. 2.Department of Biomedical SciencesUniversity of BradfordBradfordU.K
  3. 3.Center for Marine Biotechnology, Columbus CenterBaltimoreU.S.A.

Personalised recommendations