Skip to main content
Log in

Steps, Waves and Turbulence in the Stably Stratified Planetary Boundary Layer

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The stably-stratified planetary boundary layer contains small-vertical-scale, step-like structures, waves on a multitude of scales, large horizontal eddies and small-scale turbulence, all of which constantly interact with, and modify, one another. Current knowledge of how the various components act in the vicinity of the step-like structures is surveyed. It is concluded that packets of internal waves are the main conduit for interaction within and across the boundary layer, and low-intensity critical-level absorption at the fringes of their spectrum probably maintains the step-like structures. Further investigation of the processes requires intensive observations of the four-dimensional structure of the region, but such an investigation will need a new generation of high-resolution sensing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belcher, S. E. and Woods, N.: 1996, ‘Form and Wave Drag Due to Stably Stratified Turbulent Flow over Low Ridges’, Quart. J. Roy. Meteorol. Soc. 122, 863–902.

    Google Scholar 

  • Broad, A. S.: 1966, ‘High-Resolution Numerical-Model Integrations to Validate Gravity-Wave-Drag Parametrization Schemes: A Case Study’, Quart. J. Roy. Meteorol. Soc. 122, 1625–1653.

    Google Scholar 

  • Brooks, I.M. and Rogers, D. P.: 1997, ‘Aircraft Observations of Boundary Layer Rolls Off the Coast of California’, J. Atmos. Sci. 54, 1834–1849.

    Google Scholar 

  • Brown, R. A.: 1980, ‘Longitudinal Instabilities and Secondary Flow in the Planetary Boundary Layer: A Review’, Rev. Geophys. Space Phys. 18, 683–697.

    Google Scholar 

  • Brown, A. R., Derbyshire, S. H., and Mason, P. J.: 1994, ‘Large-Eddy Simulation of Stable Atmospheric Boundary Layers with a Revised Stochastic Subgrid Model’, Quart. J. Roy. Meteorol. Soc. 120, 1485–1512.

    Google Scholar 

  • Caccia, J.-L., Benech, B., and Klaus, V.: 1997, ‘Space-Time Description of Non-Stationary Lee Waves using ST Radars, Aircraft and Constant Volume Balloons during the PYREX Experiment’, J. Atmos. Sci. 54, 1821–1833.

    Google Scholar 

  • Chimonas, G.: 1972, ‘The Stability of a Coupled Wave-Turbulence System in a Parallel Shear Flow’, Boundary-Layer Meteorol. 2, 444–452.

    Google Scholar 

  • Chimonas, G.: 1993, ‘Surface Drag Instabilities in the Atmospheric Boundary Layer’, J. Atmos. Sci. 50, 1914–1924.

    Google Scholar 

  • Chimonas, G.: 1994, ‘Jeffreys’ Drag-Instability Applied to Waves in the Atmosphere: Linear and Non-Linear Growth Rates’, J. Atmos. Sci. 51, 3758–3775.

    Google Scholar 

  • Chimonas, G. and Hines, C. O.: 1986, ‘Doppler Ducting of Atmospheric Gravity Waves’, J. Geophys. Sci. 91, 1219–1230.

    Google Scholar 

  • Deardorff, J. W.: 1974, ‘Three-Dimensional Study of the Height and Mean Structure of a Heated Planetary Boundary Layer’, Boundary-Layer Meteorol. 7, 81–106.

    Google Scholar 

  • Einaudi, F. and Finnigan, J. J.: 1993, ‘Wave-Turbulence Dynamics in the Stably Stratified Boundary Layer’, J. Atmos. Sci. 50, 1841–1863.

    Google Scholar 

  • Einaudi, F. and Finnigan, J. J.: 1981, ‘The Interaction between an Internal Gravity Wave and the Planetary Boundary Layer. Part I: The Linear Analysis’, Quart. J. Roy. Meteorol. Soc. 107, 793–806.

    Google Scholar 

  • Einaudi, F. and Finnigan, J. J.: 1993, ‘Wave-Turbulence Dynamics in the Stably Stratified Boundary Layer’, J. Atmos. Sci. 50, 1841–1864.

    Google Scholar 

  • Etling, D. and Brown, R. A.: 1993, ‘Roll Vortices in the Planetary Boundary Layer: A Review’, Boundary-Layer Meteorol. 65, 215–248.

    Google Scholar 

  • Etling, D. and Raasch, S.: 1987, ‘Numerical Simulation of Vortex Roll Development during a Cold Air Outbreak’, Dyn. Atmos. Oceans 10, 277–290.

    Google Scholar 

  • Fett, R. W., Burk, S. D., Thompson, W. T., and Kozo, T. L.: 1994, ‘Environmental Phenomena of the Beaufort Sea Observed during the Leads Experiments’, Bull. Amer. Meteorol. Soc. 75, 2131–2145.

    Google Scholar 

  • Finnigan, J. J. and Einaudi, F.: 1981, ‘The Interaction between an Internal Gravity Wave and the Planetary Boundary Layer. Part II: Effect of the Wave on the Turbulent Structure’, Quart. J. Roy. Meteorol. Soc. 107, 807–832.

    Google Scholar 

  • Finnigan, J. J., Einaudi, F., and Fua, D.: 1981, ‘The Interaction between an Internal Gravity Wave and Turbulence in the Stably-Stratified Nocturnal Boundary Layer’, J. Atmos. Sci. 41, 2409–2436.

    Google Scholar 

  • Fritts, D. C.: 1984, ‘Gravity Wave Saturation in the Middle Atmosphere: A Review of Theory and Observations’, Rev. Geophys. Space Phys. 22, 275–308.

    Google Scholar 

  • Geiger, R.: 1966, The Climate near the Ground, Harvard University Press, Cambridge, MA, 611 pp.

    Google Scholar 

  • Gossard, E. E., Richter, J. H., and Atlas, D.: 1970, ‘Internal Waves in the Atmosphere from High-Resolution Radar Measurements’, J. Geophys. Res. 75, 903–913.

    Google Scholar 

  • Gossard, E. E., Gaynor, J. F., Zamor, R. J., and Neff, W. D.: 1985, ‘Fine Structure of Elevated Stable Layers Observed by Sounder and in situ Tower Sensors’, J. Atmos. Sci. 42, 2156–2169.

    Google Scholar 

  • Gossard, E. E. and Hooke, W. H.: 1975, Waves in the Atmosphere. Developments in Atmospheric Science, Vol. 2, Elsevier Publishing Company, New York, ISBN 0–444–41196–8.

    Google Scholar 

  • Grubisic, V. and Smolarkiewicz, P. K.: 1997, ‘The Effect of Critical Levels on 3-D Orographic Flows: Linear Regime’, J. Atmos. Sci. 54, 1934–1960.

    Google Scholar 

  • Hines, C. O.: 1960, ‘Internal Gravity Waves at Ionospheric Heights’, Can. J. Phys. 38, 1441.

    Google Scholar 

  • Hines, C. O.: 1970, ‘Comments on paper by E. E. Gossard, J. H. Richter, and D. Atlas, “Internal Waves in the Atmosphere from High-Resolution Radar Measurements”’, J. Geophys. Res. 75, 5956–5959.

    Google Scholar 

  • Högström, U.: 1990, ‘Analysis of Turbulence Structure in the Surface Layer with a Modified Similarity Formulation for near Neutral Conditions’, J. Atmos. Sci. 47, 1949–1972.

    Google Scholar 

  • Högström, U., Smedman, A., and Bergström, H.: 1999, ‘A Case Study of Two-Dimensional Turbulence’, J. Atmos. Sci. 56, in press.

  • Holton, J. R.: 1982, ‘The Role of Gravity Wave-Induced Drag and Diffusion in the Momentum Budget of the Mesosphere’, J. Atmos. Sci. 39, 791.

    Google Scholar 

  • Holton, J. R. and Lindzen, R. S.: 1972, ‘Updated Theory for the Quasi-Biennial Cycle of the Tropical Stratosphere’, J. Atmos. Sci. 29, 1076.

    Google Scholar 

  • Hooke, W. H., Hall, F. F., and Gossard, E. E.: 1973, ‘Observed Generation of an Atmospheric Gravity Wave by Shear Instability in the Mean Flow of the Planetary Boundary Layer’, Boundary-Layer Meteorol. 5, 29–41.

    Google Scholar 

  • Jeffreys, H.: 1925, ‘The Flow of Water in an Inclined Channel of Rectangular Section’, Phil. Mag. 49, 793–807.

    Google Scholar 

  • Jin, Y., Kock, S. E., Lin, Y.-L, Ralph, F. M., and Chen, C.: 1996, ‘Numerical Simulations of an Observed Gravity Current in an Environment Characterized by Complex Stratification and Shear’, J. Atmos. Sci. 53, 3570–3588.

    Google Scholar 

  • Lee, X.: 1997, ‘Gravity Waves in a Forest: A Linear Analysis’, J. Atmos. Sci. 54, 2574–2585.

    Google Scholar 

  • Lemone, M.: 1973, ‘The Structure and Dynamics of Horizontal Roll Vortices in the PBL’, J. Atmos. Sci. 30, 1077–1091.

    Google Scholar 

  • Lilly, D. K.: 1966, ‘On the Instability of Ekman Boundary Flow’, J. Atmos. Sci. 23, 481–494.

    Google Scholar 

  • Lilly, D. K.: 1968, ‘Models of Cloud-Topped Mixed Layers under a Strong Inversion’, Quart. J. Roy. Meteorol. Soc. 94, 292–309.

    Google Scholar 

  • Lin, Y. L. and Wang, T. A.: 1996, ‘Flow Regimes and Transient Dynamics of Two-Dimensional Stratified Flows over an Isolated Mountain Ridge’, J. Atmos. Sci. 53, 139–158.

    Google Scholar 

  • Lindzen, R. S. and Holton, J. R.: 1968, ‘A Theory of the Quasi-Biennial Oscillation’, J. Atmos. Sci. 25, 1095.

    Google Scholar 

  • Lott, F. and Miller, M. J.: 1997, ‘A New Subgrid-Scale Parametrization: Its Formulation and Testing’, Quart. J. Roy. Meteorol. Soc. 123, 101–127.

    Google Scholar 

  • Mahrt, L.: 1999, ‘Stratified Atmospheric Boundary Layers’, Boundary-Layer Meteorol., this issue.

  • Mason, P. J.: 1994, ‘Large-Eddy Simulation: A Critical Review of Technique’, Quart J. Roy. Meteorol. Soc. 120, 1–26.

    Google Scholar 

  • Mason, P. J. and Sykes, R. I.: 1982, ‘A Two-Dimensional Numerical Study of Horizontal Roll Vortices in an Inversion Capped Planetary Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 108, 801–823.

    Google Scholar 

  • Metcalf, J. I. and Atlas, D.: 1972, ‘Microscale Ordered Motions and Atmospheric Structure Associated with Thin Echo Layers in Stably Stratified Zones’, Boundary-Layer Meteorol. 4, 7–35.

    Google Scholar 

  • Miles, J. W.: 1961, ‘On the Stability of Heterogeneous Shear Flows’, J. Fluid Mech. 10, 496–508.

    Google Scholar 

  • Miles, J. W. and Howard, L. N.: 1964, ‘Note on a Heterogeneous Shear Flow’, J. Fluid Mech. 20, 331–336.

    Google Scholar 

  • Nance, L. B. and Durran, D. R.: 1997, ‘A Modeling Study of Nonstationary Trapped Mountain Lee Waves. Part 1: Mean-Flow Variability’, J. Atmos. Sci. 54, 2275–2291.

    Google Scholar 

  • Nappo, C. J.: 1989, ‘A Theoretical Investigation of Gravity-Wave-Generated Stress and Vorticity in the Planetary Boundary Layer’, Ph.D Thesis, Georgia Institute of Technology.

  • Nappo, C. J. and Chimonas, G.: 1992, ‘Wave Exchange between the Ground Surface and a Boundary-Layer Critical Level’, J. Atmos. Sci. 49, 1075–1091.

    Google Scholar 

  • Olafsson, H. and Bougeault, P.: 1996, ‘Nonlinear Flow Past an Elliptic Mountain Ridge’, J. Atmos. Sci. 53, 2465–2489.

    Google Scholar 

  • Orlanski, I. and Cerasoli, C. P.: 1981, ‘Energy Transfer Among Internal Gravity Modes: Weak and Strong Interactions’, J. Geophys. Res. 86, 4103–4124.

    Google Scholar 

  • Prusa, J. M., Smolarkiewicz, P. K., and Garcia, R. R.: 1996, ‘Propagation and Breaking at High Altitudes of Gravity Waves Excited by Tropospheric Forcing’, J. Atmos. Sci. 53, 2186–2216.

    Google Scholar 

  • Reddy, N. C. and Raman, S.: 1994, ‘Scales and Spectra of Turbulence over the Gulf Stream during Cyclogenesis’, Boundary-Layer Meteorol. 68, 387–417.

    Google Scholar 

  • Smith, R. B., Gleason, A. C., and Gluhosky, P. A.: 1997, ‘The Wake of St. Vincent’, J. Atmos. Sci. 54, 606–623.

    Google Scholar 

  • Stewart, R. S.: 1969, ‘Turbulence and Waves in a Stratified Medium’, Radio Science 4, 1269–1278.

    Google Scholar 

  • Stull, R. B.: 1984, ‘Transilient Turbulence Theory. Part 1: The Concept of Eddy Mixing Across Finite Distances’, J. Atmos. Sci. 41, 3351–3367.

    Google Scholar 

  • Stull, R. B.: 1988, An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Boston, 666 pp.

    Google Scholar 

  • Sutton, O. G.: 1977, Micrometeorology, Robert E. Krieger Publishing Co., New York. Reprint of 1955 original, 333 pp.

    Google Scholar 

  • Tennekes, H.: 1973, ‘A Model for the Dynamics of the Inversion above a Convective Boundary Layer’, J. Atmos. Sci. 30, 558–567.

    Google Scholar 

  • Tennekes, H.: 1975, ‘Reply’, J. Atmos. Sci. 32, 992–995.

    Google Scholar 

  • Turner, J. S.: 1973, Buoyancy Effects in Fluids, Cambridge University Press, 367 pp.

  • Woods, J. D.: 1968, ‘Wave-Induced Shear Instability in the Summer Thermocline’, J. Fluid Mech. 32, 791–800.

    Google Scholar 

  • Woods, J D.: 1969, ‘On Richardson's Number as a Criterion for the Laminar-Turbulent-Laminar Transition in the Ocean and Atmosphere’, Radio Science 4, 1289–1298.

    Google Scholar 

  • Zilitinkevich, S. S.: 1975, ‘Comments on “A Model for the Dynamics of the Inversion above a Convective Boundary Layer”’, J. Atmos. Sci. 32, 991–992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chimonas, G. Steps, Waves and Turbulence in the Stably Stratified Planetary Boundary Layer. Boundary-Layer Meteorology 90, 397–421 (1999). https://doi.org/10.1023/A:1001709029773

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1001709029773

Navigation