Skip to main content
Log in

Numerical Experiments in Scalar Diffusion under Stochastic Convection

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

We study scalar diffusion, both from Eulerian and Lagrangian perspectives, advected by two dimensional flows. Emphasis is devoted to the problem of scalar diffusion under a synthetic turbulent flow. We present numerical and analytical results for the turbulent diffusion coefficient either from the influence of the turbulent synthetic field and a periodic array of eddies. Preliminary results concerning Lagrangian dispersion are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avellaneda, M., Torcuato, S. and Kim, I.C., Diffusion and geometric effects in passive advection by random array of vortices. Phys. Fluids 3 (1991) 1880–1891.

    Google Scholar 

  2. Batchelor, G.K., Diffusion in a field of homogeneous turbulence. I. Eulerian analysis. Aust. J. Sci. Res. A 2 (1949) 437–450.

    Google Scholar 

  3. Biferale, L., Crisanti, A., Vergassola, M. and Vulpinani, A., Eddy diffusivities in scalar transport. Phys. Fluids 7 (1995) 2725–2734.

    Google Scholar 

  4. Brown, M.G. and Smith, K.B., Are SOFAR float trajectories chaotic? J. Phys. Oceanogr. 20 (1990) 139–149.

    Google Scholar 

  5. Careta, A., Sagués, F., Ramírez-Piscina, L. and Sancho, J.M., Effective diffusion in a stochastic velocity field. J. Stat. Phys. 71 (1993) 235–0242.

    Google Scholar 

  6. Careta, A., Sagués, F. and Sancho, J.M., Diffusion of passive scalar under stochastic convection. Phys. Fluids 6 (1994) 349–355.

    Google Scholar 

  7. Frisch, U., Turbulence: The Legacy of A.N. Kolmogorov. Cambridge University Press, New York (1995).

    Google Scholar 

  8. Fung, J.C.H., Hunt, J.C.R., Malik, N.A. and Perkins, R.J., Kinematic simulation of homogeneous turbulence by unsteady random Fourier modes. J. Fluid Mech. 236 (1992) 281–318.

    Google Scholar 

  9. Fung, J.C.H. and Vassilicos, J.C., Two-particle dispersion in turbulent-like flows. Phys. Rev. E 57 (1998) 1677–1690.

    Google Scholar 

  10. Gawedzki, K. and Kupiainen, A., Anomalous scaling of passive scalar. Phys. Rev. Lett. 75 (1995) 3834–3837.

    Google Scholar 

  11. Holzer, M. and Siggia, E.D., Turbulent mixing of a passive scalar. Phys. Fluids 6 (1994) 1820–1837.

    Google Scholar 

  12. Isichenko, M.B., Percolation, statistical topography and transport in random media. Rev. Mod. Phys. 64 (1992) 961–1043.

    Google Scholar 

  13. Kármán, T. von, Progress in the theoretical theory of turbulence. Proc. Natl. Acad. Sci. USA 34 (1948) 530–539.

    Google Scholar 

  14. Klyatskin, V.I., Woyczynski, W.A. and Gurarie, D., Diffusing passive tracers in random incompressible flows: Statistical topography aspects. J. Stat. Phys. 84 (1996) 797–836.

    Google Scholar 

  15. Kraichnan, R.H., The structure of isotropic turbulence at very high Reynolds numbers. J. Fluid Mech. 5 (1959) 497–543.

    Google Scholar 

  16. Kraichnan, R.H., Diffusion by a random velocity field. Phys. Fluids 13 (1970) 22–31.

    Google Scholar 

  17. Kraichnan, R.H., Passive scalar: Scaling exponent and realizability. Phys. Rev. Lett. 78 (1997) 4922–4925.

    Google Scholar 

  18. Lipscombe, T.C., Frenkel, A.L. and Ter Haar, D., On the convection of a passive scalar by a Gaussian velocity field. J. Stat. Phys. 63 (1991) 305–313.

    Google Scholar 

  19. Martí, A.C., Sagués, F., Sancho, J.M. and Careta, A., Langevin approach to generate synthetic turbulent flows. Phys. Fluids 9 (1997) 1078–1084.

    Google Scholar 

  20. McComb, W.D., The Physics of Fluid Turbulence. Oxford University, Oxford (1990).

    Google Scholar 

  21. Moffat, H.K., Transport effects associated with turbulence with particular attention to the influence of the helicity. Rep. Prog. Phys. 46 (1983) 621–664.

    Google Scholar 

  22. Monin, A.S. and Yaglom, A.M., Statistical Fluid Mechanics. MIT, Cambridge, MA (1975).

    Google Scholar 

  23. Obukhov, A.M., On the distribution of energy in the spectrum of turbulent flow. C. R. Acad. Sci. USSR 32 (1941) 19–22.

    Google Scholar 

  24. Paret, J. and Tabeling, P., Experimental observations of the two-dimensional energy cascade. Phys. Rev. Lett. 79 (1997) 4162–4165.

    Google Scholar 

  25. Pope, S.B., Lagrangian pdf methods for turbulent flows. Annu. Rev. Fluid Mech. 26 (1994) 23–63.

    Google Scholar 

  26. Redondo, J.M. and Castilla, R., Comparison between Lagrangian and Eulerian statistics in 2D and 3D turbulence. In: Heat Transfer Enhancement by Lagrangian Chaos and Turbulence. Private communication (1994) pp. 111–118.

  27. Richardson, L.F., Atmospheric diffusion shown in a distance-neighbor graph. Proc. R. Soc. London Ser. A 110 (1926) 709–737.

    Google Scholar 

  28. Roberts, P.H., Analytical theory of turbulent diffusion. J. Fluid Mech. 11 (1961) 257–283.

    Google Scholar 

  29. Tabeling, P., Burkhart, S., Cardoso, O. and Willaime, H., Experimental study of freely decaying two-dimensional turbulence. Phys. Rev. Lett. 67 (1991) 3772–3775.

    Google Scholar 

  30. Taylor, G.I., Diffusion by continuous movements. Proc. London Math. Soc. 20 (1921) 196–211.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martí, A., Sagués, F. & Sancho, J. Numerical Experiments in Scalar Diffusion under Stochastic Convection. Flow, Turbulence and Combustion 59, 127–139 (1997). https://doi.org/10.1023/A:1001123103064

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1001123103064

Navigation