Skip to main content
Log in

The isomerization of glutamate dehydrogenase in response to lead toxicity in maize

  • Published:
Biologia Plantarum

Abstract

Maize (Zea mays) was cultivated on lead-adultrated soil up to 600 mg(Pb) kg-1. At maturity, the maize seeds were harvested. The glutamate dehydrogenase (GDH) was fractionated to its isoenzyme population by Rotofor isoelectric focusing (IEF). The increasing Pb concentration progressively enhanced the more acidic isoenzymes (pI 6.3 - 6.5), and at the same time suppressed the less acidic isoenzymes (pI 7.3 - 7.8) and at the 600 mg(Pb) kg-1(soil) only the most acidic couple of isoenzymes (pI 6.3, and 6.5) were detectable. The NH4+ Km values of the GDH increased progressively from 6.2 in the control to 100 mM and the total glutathione content of maize seeds from 60 to 240 nmol g-1 in the 600 mg(Pb) kg-1(soil) treated maize. The orderly, and sequential isomerization of GDH in response to Pb suggests that the enzyme functions as a sensor in the monitoring of environmentally induced stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alscher, R.G.: Biosynthesis and antioxidant function of glutathione in plants.-Physiol. Plant. 77: 457-464, 1989.

    Article  CAS  Google Scholar 

  • Anderson, M.E.: Tissue glutathione.-In: Greenwald, R.A. (ed.): Handbook of Methods for Oxygen Radical Research. Pp. 317-323. CRC Press, Boca Raton 1985.

    Google Scholar 

  • Cammaerts, D., Jacobs, M.: A study of the role of glutamate dehydrogenase in the nitrogen metabolism of Arabidopsis thaliana. Planta 163: 517-526, 1985.

    Article  CAS  Google Scholar 

  • Cunningham, S.D., Ow, D.W.: Promises and prospects of phytoremediation.-Plant Physiol. 110: 715-719, 1996.

    PubMed  CAS  Google Scholar 

  • Dixon, R.A., Dey, P.M.: Phytoalexins: enzymology and molecular biology.-In: Meister, A. (ed.): Advances in Enzymology. Vol. 55. Pp. 1-136. John Wiley & Sons, New York 1983.

    Google Scholar 

  • Fricke, W., Pahlich, E.: Malate: a possible source of error in the NAD glutamate dehydrogenase assay.-J. exp. Bot. 43: 1515-1518, 1992.

    CAS  Google Scholar 

  • Fuhrer, J.: Ethylene biosynthesis and cadmium toxicity in leaf tissue of beans (Phaseolus vulgaris L.).-Plant Physiol. 70: 162-167, 1982.

    PubMed  CAS  Google Scholar 

  • Garcia, A., Mangaroo, A.S.: Residual concentration of selected heavy metals in a sewage sludge amended soil and uptake by coastal bermudagrass.-In: Clapp, C.E., Larson, W.E., Dowdy, R.H. (ed.): Sewage Sludge: Land Utilization and the Environment. Pp. 187-192. Soil Science Society of America, Madison 1994.

    Google Scholar 

  • Gossett, D.R., Banks, S.W., Millhollon, E.P., Lucas, M.C.: Antioxidant response to NaCl stress in a control and an NaCl-tolerant cotton cell line grown in the presence of paraquat, buthionine sulfoximine, and exogenous glutathione.-Plant Physiol. 112: 803-809, 1996.

    PubMed  Google Scholar 

  • Hahn, M.G., Cheong, J., Alba, R., Enkerli, J., Cote, F.: Oligosaccharide elicitors: structures and recognition.-In: Fritig, B., Legrand, M. (ed.): Mechanisms of Plant Defence Responses. Pp. 99-116. Kluwer Academic Press, Dordrecht-Boston-London 1993.

    Google Scholar 

  • Koeppe, D.E.: Lead: understanding the minimal toxicity of lead in plants.-In: Lepp, N.W. (ed.): Effects of Heavy Metal Pollution on Plants. Vol. 1. Effects of Trace Metals on Plant Function. Pp. 55-76. Applied Science Publishers, New Jersey 1981.

    Google Scholar 

  • Lee, K.C., Cunningham, B.A., Chung, K.H., Paulsen, G.M.: Lead effects on several enzymes and nitrogenous compounds in soybean leaf.-J. Environ. Qual. 5: 357-359, 1976.

    Article  CAS  Google Scholar 

  • Loulakakis, K.A., Roubelakis-Angelakis, K.A.: The seven NAD(H) glutamate dehydrogenase isoenzymes exhibit similar anabolic and catabolic activities.-Physiol. Plant. 96: 29-35, 1996.

    Article  CAS  Google Scholar 

  • Loulakakis, K.A., Roubelakis-Andelakis, K.A., Kanellis, A.K.: Regulation of glutamate dehydrogenase and glutamine synthetase in avocado fruit during development and ripening.-Plant Physiol. 106: 217-222, 1994.

    PubMed  CAS  Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin phenol reagent.-J. biol. Chem. 193: 265-275, 1951.

    PubMed  CAS  Google Scholar 

  • Loyola-Vargas, V.M., De Jimenez, E.S.: Differential role of glutamate dehydrogenase in nitrogen metabolism of maize tissues.-Plant Physiol. 16: 536-540, 1984.

    Google Scholar 

  • Maitani, T., Kubota, H., Sato, K., Yamada, T.: The composition of metals bound to class III metallothionein (phytochelatin and its desglycyl peptide) induced by various metals in root cultures of Rubia tinctoram.-Plant Physiol. 110: 1145-1150, 1996.

    PubMed  CAS  Google Scholar 

  • Malone, C.D., Koeppe, D.E., Miller, R.J.: Localization of lead accummulation by corn plants.-Plant Physiol. 53: 388-394, 1974.

    PubMed  CAS  Google Scholar 

  • Marschner, H.: Mineral Nutrition of Higher Plants.-Academic Press, New York 1986.

    Google Scholar 

  • Mattoo, A.K., Mehta, R.A., Baker, J.E.: Copper-induced ethylene biosynthesis in terrestrial (Nicotiana tabacum) and aquatic (Spirodela oligorriza) higher plants.-Phytochemistry 31: 405-409, 1992.

    Article  CAS  Google Scholar 

  • May, M.J., Leaver, C.J.: Oxidative stimulation of glutathione synthesis in Arabidopsis thaliana suspension cultures.-Plant Physiol. 103: 621-627, 1993.

    PubMed  CAS  Google Scholar 

  • McKersie, B.D., Senaratna, T., Walker, M.A., Kendall, E.J., Hetherington, P.R.: Deterioration of membranes during aging in plants: evidence for free radical mediation.-In: Nooden, L.D., Leopold, A.C. (ed.): Senescence and Aging in Plants. Pp. 411-464. Academic Press, San Diego 1988.

    Google Scholar 

  • Noodén, L.D.: The phenomena of senescence and aging.-In Nooden, L.D., Leopold, A.C. (ed.): Senescence and Aging in Plants. Pp. 1-50. Academic Press, San Diego-New York-Berkeley-Boston-London-Sydney-Tokyo-Toronto 1988.

    Google Scholar 

  • Oaks, A.: Evidence for deamination by glutamate dehydrogenase in higher plants: Reply.-Can. J. Bot. 73: 1116-1117, 1995.

    CAS  Google Scholar 

  • Osuji, G.O., Cuero, R.G.: A rapid method for enhancing the storage protein yields of yam tuber, sweetpotato, and maize through N-carboxymethylchitosan treatment of the crops.-Med. Fac. Landbouww. Rijksuniv. Gent 56: 1661-1672, 1991.

    CAS  Google Scholar 

  • Osuji, G.O., Cuero, R.G.: Regulation of ammonium ion salvage and enhancement of the storage protein contents of corn, sweetpotato, and yam tuber by N-carboxymethylchitosan application.-J. Agr. Food Chem. 40: 724-734, 1992.

    Article  CAS  Google Scholar 

  • Osuji, G.O., Mndu, W.C.: Ammonium ion dependent isomerization of glutamate dehydrogenase in relation to glutamate synthesis in maize.-Phytochemistry 39: 495-503, 1995.

    Article  CAS  Google Scholar 

  • Osuji, G.O., Madu, W.C.: Ammonium ion saivage by glutamate dehydrogenase during defence response in maize.-Phytochemistry 42: 1491-1498, 1996.

    Article  CAS  Google Scholar 

  • Pennazio, S., Roggero, P.: Effect of cadmium and nickel on ethylene biosynthesis in soybean.-Biol. Plant. 34: 345-349, 1992.

    Article  CAS  Google Scholar 

  • Peterson, P.J.: Adaptation to toxic metals.-In: Robb, D.A., Pierpoint, W.S. (ed.): Metals and Micronutrients: Uptake and Utilization by Plants. Pp. 51-69. Academic Press, New York 1983.

    Google Scholar 

  • Rauser, W.E.: Phytochelatins.-Annu. Rev. Biochem. 59: 61-86, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, S.A., Slade, A.P., Fox, G.G., Phillips, R., Ratcliffe, R.G., Stewart, G.R.: The role of glutamate dehydrogenase in plant nitrogen metabolism.-Plant Physiol. 95: 509-516, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, S.A., Stewart, G.R., Phillips, R.: Regulation of glutamate dehydrogenase activity in relation to carbon limitation and protein catabolism in carrot cell suspension cultures.-Plant Physiol. 98: 1190-1195, 1992.

    PubMed  CAS  Google Scholar 

  • Ruegsegger, A., Brunold, C.: Effect of cadmium on γ-glutamyl-cysteine synthesis in maize seedlings.-Plant Physiol. 99: 428-433, 1992.

    PubMed  CAS  Google Scholar 

  • SAS Institute Inc.: SAS/STA Users Guide. Version 6. 4th Edition. Vol. 1. SAS Institute Inc., Cary 1989.

    Google Scholar 

  • Schat, H., Kalff, M.M.A.: Are phytochelatins involved in differential metal tolerance or do they merely reflect metal-imposed strain?-Plant Physiol. 99: 1475-1480, 1992.

    PubMed  CAS  Google Scholar 

  • Segel, I.H.: Enzyme Kinetics.-John Wiley & Sons, New York 1975.

    Google Scholar 

  • Srivastava, H.S., Singh, R.P.: Role and regulation of L-glutamate dehydrogenase during defence response in maize.-Phytochemistry 26: 597-610, 1987.

    Article  CAS  Google Scholar 

  • Stewart, G.R., Shatilov, V.R., Turnbull, M.H., Robinson, S.A., Goodall, R.: Evidence that glutamate dehydrogenase plays a role in the oxidative deamination of glutamate in seedlings of Zea mays.-Aust. J. Plant Physiol. 22: 805-809, 1995.

    Article  CAS  Google Scholar 

  • Tukendorf, A.: The response of spinach plants to excess of copper and cadmium.-Photosynthetica 28: 573-575, 1993.

    CAS  Google Scholar 

  • Tukendorf, A.: Phytochelatin synthesis in maize seedlings in response to excess zinc.-Biol. Plant. 38: 137-140, 1996.

    CAS  Google Scholar 

  • Tukendorf, A., Rauser, W.E.: Changes in glutathione and phytochelatins in roots of maize seedlings exposed to cadmium.-Plant Sci. 70: 155-166, 1990.

    Article  CAS  Google Scholar 

  • Vangronsveld, J., Weckx, J., Kubacka-Zebalska, M., Clijsters, H.: Heavy metal induction of ethylene production and stress enzymes: II. Is ethylene involved in the signal transduction from stress perception to stress response?-In: Pech, J.C., Latche, A., Balague, C. (ed.): Cellular and Molecular Aspects of Plant Hormone Ethylene. Pp. 240-246. Kluwer Academic Publishers, Dordrecht-Boston-London 1993.

    Google Scholar 

  • Watanabe, M., Nakayama, H., Watanabe, Y., Shimada, N.: Induction of a specific isoenzyme of glutamate dehydrogenase during isolation and the first 48 h of culture of Brassica napus leaf protoplasts.-Physiol. Plant. 86: 231-235, 1992.

    Article  CAS  Google Scholar 

  • Weckx, J., Vangronsveld, J., Clijsters, H.: Heavy metal induction of ethylene production and stress enzymes. I. Kinetics of the responses.-In: Pech, J.C., Latché, A., Balagué, C. (ed.): Cellular and Molecular Aspects of the Plant Hormone Ethylene. Pp. 238-239. Kluwer Academic Publishers, Dordrecht-Boston-London 1993.

    Google Scholar 

  • Yamaya, T., Oaks, A., Matsumoto, H.: Characteristics of glutamate dehydrogenase in mitochondria prepared from corn shoots.-Plant Physiol. 16: 1009-1013, 1984.

    Google Scholar 

  • Zimdahl, R.L., Koeppe, D.E.: Uptake by plants.-In: Boggess, W.R. (ed.): Lead in the Environment. Pp. 99-104. National Science Foundation, Washington 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osuji, G., Haby, V., Beyene, A. et al. The isomerization of glutamate dehydrogenase in response to lead toxicity in maize. Biologia Plantarum 40, 389–398 (1997). https://doi.org/10.1023/A:1001018014681

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1001018014681

Navigation