Skip to main content
Log in

Stress induced injury and antioxidant enzymes in relation to drought tolerance in wheat genotypes

  • Published:
Biologia Plantarum

Abstract

The role of plant antioxidant system in water stress tolerance was studied in three contrasting wheat genotypes. Water stress imposed at different stages after anthesis resulted in a general increase in lipid peroxidation (LPO) and decrease in membrane stability index (MSI), and contents of chlorophylls (Chl) and carotenoids (Car). Antioxidant enzymes like glutathione reductase and ascorbate peroxidase significantly increased under water stress. Genotype C 306, which had highest glutathione reductase and ascorbate peroxidase activity, also showed lowest LPO and highest MSI, and Chl and Car contents under water stress in comparison to susceptible genotype HD 2329, which showed lowest antioxidant enzyme activity as well as MSI, Chl and Car contents and highest LPO. HD 2285 which is tolerant to high temperature during grain filling period showed intermediate behaviour. Thus, the relative tolerance of a genotype to water stress as reflected by its comparatively lower LPO and higher MSI, Chl and Car contents is closely associated with its antioxidant enzyme system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnon, D.I.: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris.-Plant Physiol. 24: 1-15, 1949.

    PubMed  CAS  Google Scholar 

  • Cadenas, S.E.: Biochemistry of oxygen toxicity.-Annu. Rev. Biochem. 58: 79-110, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Davies, K.J.A.: Protein damage and degradation by oxygen radicals. I. General aspects.-J. biol. Chem. 262: 9895-9901, 1987.

    PubMed  CAS  Google Scholar 

  • Dhindsa, R.S.: Drought stress, enzymes of glutathione metabolism, oxidation injury, and protein synthesis in Tortula ruralis.-Plant Physiol. 95: 648-651, 1991.

    PubMed  CAS  Google Scholar 

  • Dhindsa, R.S., Plumb-Dhindsa, P., Thorne, T.A.: Leaf senescence correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase.-J. exp. Bot. 32: 93-101, 1981.

    CAS  Google Scholar 

  • Egneus, H., Heber, U., Kirk, M.: Reduction of oxygen by the electron transport chain of chloroplasts during assimilation of carbon dioxide.-Biochim. biophys. Acta 408: 252-268, 1975.

    Article  PubMed  CAS  Google Scholar 

  • Elstner, E.F.: Metabolism of activated oxygen species.-In: Davies, D.D. (ed.): The Biochemistry of Plants, Biochemistry of Metabolism. Vol 11. Pp. 253-315. Academic Press, San Diego 1987.

    Google Scholar 

  • Foster, J.G., Hess, J.L.: Oxygen effects on maize leaf superoxide dismutase and glutathione reductase.-Phytochemistry 21: 1527-1532, 1982.

    Article  CAS  Google Scholar 

  • Fridovich, I.: Biological effects of superoxide radical.-Arch. Biochem. Biophys. 247: 1-11, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Gamble, P.E., Burke, J.J.: Effect of water stress on the chloroplast antioxidant system. I. Alterations in glutathione reductase activity.-Plant Physiol. 76: 615-621, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Gillham, D.J., Dodge, A.D.: Hydrogen peroxide-scavenging system with in pea chloroplasts. A quantitative study.-Planta 167: 246-251, 1986.

    Article  CAS  Google Scholar 

  • Gillham, D.J., Dodge, A.D.: Chloroplast superoxide and hydrogen peroxide scavenging systems from pea leaves: seasonal variations.-Plant Sci. 50: 105-109, 1987.

    Article  CAS  Google Scholar 

  • Heath, R.L., Packer, L.: Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation.-Arch. Biochem. Biophys. 125: 189-198, 1968.

    Article  PubMed  CAS  Google Scholar 

  • Imlay, J.A., Linn, S.: DNA damage and oxygen radical toxicity.-Science 240: 1302-1309, 1988.

    PubMed  CAS  Google Scholar 

  • Jagtap, V., Bhargava, S.: Variation in the antioxidant metabolism of drought tolerant and drought susceptible varieties of Sorghum bicolor (L) Moench, exposed to highlight, low water and high temperature stress.-J. Plant Physiol. 145: 195-197, 1995.

    CAS  Google Scholar 

  • Knox, J.P., Dodge, A.D.: Singlet oxygen and plants.-Phytochemistry 24: 889-896, 1985.

    Article  CAS  Google Scholar 

  • Kraus, T.E., McKersie, B.D., Fletcher, R.A.: Paclobutrazol induced tolerance of wheat leaves to paraquat may involve increased antioxidant enzyme activity.-J. Plant Physiol. 145: 570-576, 1995.

    CAS  Google Scholar 

  • Larson, R.A.: The antioxidants of higher plants.-Phytochemistry 27: 969-978, 1988.

    Article  CAS  Google Scholar 

  • Lichtenthaler, H.K., Wellburn, W.R.: Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents.-Biochem. Soc. Trans. 11: 591-592, 1983.

    CAS  Google Scholar 

  • Liebler, D.C., Kling, D.S., Reed, D.J.: Antioxidant protection of phospholipid bilayers by α-tocopherol. Control of α-tocopherol status and lipid peroxidation by ascorbic acid and glutathione.-J. biol. Chem. 261: 12114-12119, 1986.

    PubMed  CAS  Google Scholar 

  • Malan, C., Greyling, M.M., Gressel, J.: Correlation between Cu-Zn superoxide dismutase and glutathione reductase, and environmental and xenobiotic stress tolerance in maize inbreds.-Plant Sci. 69: 157-166, 1990.

    Article  CAS  Google Scholar 

  • Moran, J.F., Becana, M., Iturbe-Ormaetxe, I., Frechilla, S., Klucas, R.V., Aparicio-Tejo, P.: Drought induced oxidative stress in pea plants.-Planta 194: 346-352, 1994.

    Article  CAS  Google Scholar 

  • Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts.-Plant Cell Physiol. 22: 867-880, 1981.

    CAS  Google Scholar 

  • Pastori, G.M., Trippi, V.S.: Oxidative stress induces high rate of glutathione reductase synthesis in a drought resistant maize strain.-Plant Cell Physiol. 33: 957-961, 1992.

    CAS  Google Scholar 

  • Premachandra, G.S., Saneoka, H., Ogata, S.: Cell membrane stability, an indicator of drought tolerance, as affected by applied nitrogen in soybean.-J. agr. Sci. 115: 63-66, 1990.

    Article  CAS  Google Scholar 

  • Sairam, R.K.: Effect of moisture stress on physiological activities of two contrasting wheat genotypes.-Indian J. exp. Biol. 32: 594-597, 1994.

    Google Scholar 

  • Sairam, R.K., Deshmukh, P.S., Shukla, D.S., Ram, S.: Metabolic activity and grain yield under moisture stress in wheat genotypes.-Indian J. Plant Physiol. 33: 226-231, 1990.

    Google Scholar 

  • Smith, I.K., Vierheller, T.L., Thorne, C.A.: Assay of glutathione reductase in crude tissue homogenates using 5,5′-dithiobis (2-nitrobenzoic acid).-Anal. Biochem. 175: 408-413, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Van Rensburg, L., Kruger, G.H.J.: Evaluation of components of oxidative stress metabolism for use in selection of drought tolerant cultivars of Nicotiana tobacum L.-J. Plant Physiol. 143: 730-736, 1994.

    CAS  Google Scholar 

  • Walker, M.A., McKersie, B.D.: Role of the ascorbate-glutathione antioxidant system in chilling resistance of tomato.-J. Plant Physiol. 141: 234-239, 1993.

    CAS  Google Scholar 

  • Whetherley, P.E.: Studies in the water relations of cotton plants. I. The field measurement of water deficit in leaves.-New Phytol. 49: 81-87, 1950.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sairam, R., Shukla, D. & Saxena, D. Stress induced injury and antioxidant enzymes in relation to drought tolerance in wheat genotypes. Biologia Plantarum 40, 357–364 (1997). https://doi.org/10.1023/A:1001009812864

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1001009812864

Navigation