Skip to main content
Log in

Cohomology of Real Diagonal Subspace Arrangements via Resolutions

  • Published:
Compositio Mathematica

Abstract

We express the cohomology of the complement of a real subspace arrangement of diagonal linear subspaces in terms of the Betti numbers of a minimal free resolution. This leads to formulas for the cohomology in some cases, and also to a cohomology vanishing theorem valid for all arrangements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aramova, A. and Herzog, J.: Koszul cycles and Eliahou—Kervaire type resolutions, J. Algebra 181 (1996), 347–370.

    Google Scholar 

  2. Backelin, J.: Les anneaux locaux à relations monomiales ont des séries de Poincaré—Betti rationnelles, C.R. Acad. Sci. Paris, 295 (1982), 605–610.

    Google Scholar 

  3. Backelin, J.: Relations between rates of growth of homologies, Rep. Univ. Stockholm, No. 25 (1988).

  4. Bayer, D. and Stillman, M.: MACAULAY: A System for Computation in Algebraic Geometry and Commutative Algebra, (1982—1992), available via anonymous ftp from zariski.harvard.edu.

  5. Björner, A.: Nonpure Shellability, f-Vectors, Subspace Arrangements and Complexity, Discrete Math. Theoret. Comput. Sci. 24, Science Press, New York, 1966, pp. 25–53.

    Google Scholar 

  6. Björner, A., Lovász, L. and Yao, A.: Linear decision trees: volume estimates and topological bounds, In: Proc. 24th ACM Sympos. Theory of Computing, ACM Press, 1992, New York, pp. 170–177.

    Google Scholar 

  7. Björner, A. and Wachs, M.: Shellable nonpure complexes and posets, I, Trans. Amer. Math. Soc. 348 (1996), 1299–1327.

    Google Scholar 

  8. Björner, A. and Welker, V.: Homology of the 'k-equal' manifolds and related partition lattices, Adv. in Math. 110(2) (1995), 277–306.

    Google Scholar 

  9. Bousfield, A. and Kan, D.: Homotopy Limits, Completions and Localizations, Lecture Notes in Math. 304, Springer-Verlag, Berlin, 1972.

    Google Scholar 

  10. Eisenbud, D.: Commutative Algebra with a View Towards Algebraic Geometry, Springer-Verlag, New York, 1995.

    Google Scholar 

  11. Eisenbud, D., Reeves, A. and Totaro, B.: Initial ideals, Veronese subrings, and rates of algebras, Adv. in Math. 109 (1994), 168–187.

    Google Scholar 

  12. Eliahou, S. and Kervaire, M.: Minimal resolutions of some monomial ideals, J. Algebra 129 (1990), 1–25.

    Google Scholar 

  13. Folkman, J.: The homology groups of a lattice, J. Math. Mech. 15 (1966), 631–636.

    Google Scholar 

  14. Fröberg, R.: Determination of a class of Poincaré series, Math. Scand. 37 (1975), 29–39.

    Google Scholar 

  15. Fulton, W. and Harris, J.: Representation Theory: A First Course, Graduate Texts in Math. 129, Springer-Verlag, Berlin, 1991.

    Google Scholar 

  16. Goresky, M. and MacPherson, R.: Stratified Morse Theory, Springer-Verlag, Berlin, 1988.

    Google Scholar 

  17. Grayson, D. and Stillman, M.: MACAULAY2 — a system for computation in algebraic geometry and commutative algebra, 1997, available from http://www.math.uiuc.edu/Macaulay2/.

  18. Gulliksen, T. and Levin, G.: Homology of Local Rings, Queen's Papers in Pure and Appl. Math. 20 Queen's Univ., Kingston, ON, 1969.

    Google Scholar 

  19. Herzog, J., Reiner, V. and Welker, V.: The Koszul Property in Affine Semigroup Rings, to appear in Pacific J. Math.

  20. Herzog, J., Reiner, V. and Welker, V.: Componentwise Linear Ideals and Golod Rings, Preprint, (1997).

  21. Kozlov, D.: On Shellability of Hypergraph Arrangements, Preprint, 1995.

  22. Mac Lane, S.: Homology, Springer-Verlag, New York, 1975.

    Google Scholar 

  23. Orlik, P. and Terao, H.: Arrangements of Hyperplanes, Springer-Verlag, New Yortk, 1992.

    Google Scholar 

  24. Peeva, I., Reiner, V. and Sturmfels, B.: How to shell a monoid, to appear in Math. Ann.

  25. Sagan, B.: The Symmetric Group-Representations, Combinatorial Algorithms and Symmetric Functions, Wadsworth & Brooks/Cole, Pacific Grove, 1991.

    Google Scholar 

  26. Sundaram, S. and Wachs, M.: The homology representations of the k-equal partition lattice, Trans. Amer. Math. Soc. 349 (1997), 935–954.

    Google Scholar 

  27. Sundaram, S. and Welker, V.: Group actions on arrangements of linear subspaces and applications to configuration spaces, Trans. Amer. Math. Soc. 349 (1997), 1389–1420.

    Google Scholar 

  28. Ziegler, G. and Živaljević, R.: Homotopy types of subspace arrangements via diagrams of spaces, Math. Ann. 295 (1993), 527–548

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peeva, I., Reiner, V. & Welker, V. Cohomology of Real Diagonal Subspace Arrangements via Resolutions. Compositio Mathematica 117, 107–123 (1999). https://doi.org/10.1023/A:1000949217231

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1000949217231

Navigation