Skip to main content
Log in

Wind Profile Diagnosis from Surface Routine Meteorological Data Over a Coastal Area

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A simple algorithm is proposed in order to transform routine surface wind speed observations near the coast to a wind at the height of the equilibrium planetary boundary layer as well as to any other height over a relatively flat coastal region. The model is based on the well known internal boundary layer (IBL) concept, Monin-Obukhov similarity theory and the resistance law, and describes the effects of the roughness transition from sea to land as well as the effect of stability on the shape of the profiles and the IBL growth. The required input weather data are no more than surface wind speed, air temperature and total cloud cover. Satisfactory agreement was found between measurements at Hellinikon airport and estimations made with the scheme. The introduction of a transition layer above the IBL did not improve the agreement to any significant extent. Mean values of the estimated wind differed by less than 1 m s -1 from the observed ones, a difference within the accuracy of the reported rawinsonde values. The rms error varied in the range of 17–22% of the observed average value, giving the best agreement under unstable conditions. The correlation coefficient between the observed and the estimated values of the wind, at the height of the equilibrium planetary boundary layer, ranged between 0.74 and 0.90.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andren, A. and Moeng, C.-H.: 1993, 'Single-Point Closures in a Neutrally Stratified Boundary Layer', J. Atmos. Sci. 50, 3366-3379.

    Google Scholar 

  • Bergstrom, H.: 1986, 'A Simple Boundary Layer Wind Model for Practical Application', J. Clim. Appl. Meteorol. 25, 813-824.

    Google Scholar 

  • Charnock, H.: 1955, 'Wind Stress on a Water Surface', Quart. J. Roy. Meteorol. Soc. 81, 639-640.

    Google Scholar 

  • Deaves, D. M.: 1981, 'Computations of Wind Flow over Changes in Surface Roughness', J. Wind Eng. Indust. Aerodyn. 7, 65-94.

    Google Scholar 

  • Driedonks, A. G. M.: 1982, 'Models and Observations of the Growth of the Atmospheric Boundary Layer', Boundary-Layer Meteorol. 23, 283-306.

    Google Scholar 

  • Garratt, J. R.: 1990, 'The Internal Boundary Layer - A Review', Boundary-Layer Meteorol. 50, 171-203.

    Google Scholar 

  • Garratt, J. R.: 1994, The Atmospheric Boundary Layer, Cambridge University Press, Cambridge, 316 pp.

    Google Scholar 

  • Gill, A. E.: 1967, The Turbulent Ekman Layer, Preprint, Dept. Appl. Math. Theoret. Phys., Cambridge University.

  • Hanna, S. R.: 1987, 'An Empirical Formula for the Height of the Coastal Internal Boundary Layer', Boundary-Layer Meteorol. 40, 205-207.

    Google Scholar 

  • Hanna, S. R. and Chang, C. J.: 1992, 'Boundary Layer Parameterizations for Applied Dispersion Modelling over Urban Areas', Boundary-Layer Meteorol. 58, 229-259.

    Google Scholar 

  • Holtslag, A. A. M. and Van Ulden, A. P.: 1983, 'A Simple Scheme for Daytime Estimates of the Surface Fluxes from Routine Weather Data', J. Climate Appl. Meteor. 22, 517-529.

    Google Scholar 

  • Holtslag, A. A. M.: 1984, 'Estimates of Diabatic Wind Profiles from Near Surface Weather Observations', Boundary-Layer Meteorol. 29, 225-250.

    Google Scholar 

  • Jensen, N. O., Petersen, E. L., and Troen, I.: 1984, 'Extrapolation of Mean Wind Statistics with Special Regard to Wind Energy Applications', WMO. Report WCP-86, Geneva, 85 pp.

  • Kitaigorodskii, S. A.: 1970, The Physics of Air-Sea Interaction, Gidrometeoizdat, Leningrad, 284 pp. (In Russian. English translation: Israel Progr. Scient. Translation, Jerusalem, 1973, 236 pp.)

    Google Scholar 

  • Lalas, D. P.: 1985, 'Wind Energy Estimation and Siting in Complex Terrain', Int. J. Solar Energy 3, 43-71.

    Google Scholar 

  • Lalas, D. P., Asimakopoulos, D. N., Helmis, K., and Deligiorgi, G.: 1983, 'Sea Breeze Circulation and Photochemical Pollution in Athens, Greece', Atmos. Environment 17, 1621-1632.

    Google Scholar 

  • Mason, P. J. and Thomson, D. J.: 1987, 'Large-Eddy Simulations of the Neutral-Static-Stability Planetary Boundary Layer', Quart. J. Roy. Meteorol. Soc. 113, 413-443.

    Google Scholar 

  • Oke, T. R.: 1987, Boundary Layer Climates, 2nd edition. Methuen, New York, 435 pp.

    Google Scholar 

  • Preserakos, N. G.: 1986, 'Characteristics of the Sea Breeze in Attica, Greece', Boundary-Layer Meteorol. 36, 245-266.

    Google Scholar 

  • Van Ulden, A. and Holtslag, A. M.: 1985, 'Estimation of Atmospheric Boundary Layer Parameters for Diffusion Applications', J. Clim. Appl. Meteorol. 24, 1196-1207.

    Google Scholar 

  • Venkatram, A.: 1980, 'Estimating the Monin Obukhov Length in the Stable Boundary Layer for Dispersion Calculations', Boundary-Layer Meteorol. 19, 481-485.

    Google Scholar 

  • Walmsley, J. L.: 1988, 'On Theoretical Wind Speed and Temperatures Profiles over the Sea with Applications to Data from Sable Island, Nova Scotia', Atmosphere-Ocean 26, 203-233.

    Google Scholar 

  • Zilitinkevich, S. S.: 1972, 'On the Determination of the Height of the Ekman Boundary Layer', Boundary-Layer Meteorol. 3, 141-145.

    Google Scholar 

  • Zilitinkevich, S. S.: 1989, 'Velocity Profiles, the Resistance Law and the Dissipation Rate of Mean Flow Kinetic Energy in a Neutrally and Stably Stratified Planetary Boundary Layer', Boundary-Layer Meteorol. 7, 475-487.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tombrou, M., Founda, D. Wind Profile Diagnosis from Surface Routine Meteorological Data Over a Coastal Area. Boundary-Layer Meteorology 87, 217–231 (1998). https://doi.org/10.1023/A:1000943028192

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1000943028192

Navigation