Skip to main content
Log in

Modelling of simultaneous production of polygalacturonase and exopolysaccharide by Aureobasidium pullulans ATHUM 2915

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The polymorphic fungus Aureobasidium pullulans ATHUM 2915, produced significant quantities of extracellular polygalacturonase and polysaccharide when grown, under controlled conditions, in liquid medium with pectin and glucose as carbon sources and nitrogen source as limited factor. Growth, substrate consumption and products formation were simulated by a structured mathematical model, which was compared with the experimental data from batch culture in a chemostat. This model was applied successfully in the study of some essential parameters influenced the process at various pH values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aggelis G, Ratomahenina R, Arnaud A, G1alzy P, Martin P, Peraud J, Pina M & Graille J (1988) Etude de l & #x2019;influence des conditions de culture sur la teneur en acide gamma linolenique de souches de Mucor. Oleagineux 43: 311–317.

    Google Scholar 

  • Aggelis G & Sourdis J (1997) Prediction of lipid accumulation-degradation in oleaginous microorganisms growing on vegetable oils. Antonie van Leeuwenhoek 72: 159–165

    Google Scholar 

  • Bermejo MJ, Dominguez JB, Goni FM & Uruburu F (1981a) Influence of carbon and nitrogen sources on the transition from yeast-like cells to chlamydospores in Aureobasidium pullulans. Antonie van Leeuwenhoek 47: 107–119

    Google Scholar 

  • 1—(1981b) Influence of pH on the transition from yeast-like cells to chlamydospores in Aureobasidium pullulans. Antonie van Leeuwenhoek 47: 385–392

  • Biely P, Heinrichova K & Kruzikova M (1996) Induction and inducers of the pectolytic system in Aureobasidium pullulans. Curr. Microbiol. 33: 6–10

    Google Scholar 

  • Bluemenkrantz N & Asboe-Hansen G (11973) New methods for quantitative determination of uronic acids. Anal. Biochem. 54: 484–489

    Google Scholar 

  • Catley BJ (1971a) Role of pH and nitrogen limitation in the elaboration of the extracellular polysaccharide pullulan by Pullularia pullulans. Appl. Microbiol. 22: 650–654

    Google Scholar 

  • —(1971b) Utilization of carbon sources by Pullularia pullulans for the elaboration of Extracellular polysaccharides Appl. Microbiol. 22: 641–649

    Google Scholar 

  • Cooper LA & Gadd GM (1984) The induction of mycelial development in Aurebasidium pullulans (IMI 45533) by yeast extract. Antonie van Leeuwenhoek 50: 249–260

    Google Scholar 

  • Fogarty WM & Kelly CT (1983) Pectic enzymes. In: Fogarty WM(Eds) Microbial Enzymes and Biotechnology (pp 131–182). Applied Science Publishers, London

    Google Scholar 

  • Fonseca MJV & Said S (1995) Sequential production of pectinases by Penicillium frequentans. World J. Microbiol. Biotechnol. 11: 174–177

    Google Scholar 

  • Friedrich J, Climerman A & Stiner W(1990) Production of pectolytic enzyme by Aspergillus niger: effect of inoculum size and potassium hexacyanoferrate IItrihydrate. Appl. Microbiol. Biotechnol. 33: 377–381.

    Google Scholar 

  • Galiotou-Panayotou M, Kapantai M & Kalantzi O (1997) Growth conditions of Aspergillus sp. ATHUM3482 for polygalacturonase production. Appl. Microbiol. and Biotechnol. 47: 425–429

    Google Scholar 

  • Galiotou-Panayotou M, Rodis P & Kapantai M (1993) Enhanced polygalacturonase production by Aspergillus niger NRRL-364 grown on supplemented citrus. Lett. Appl. Microbiol. 17: 145–148.

    Google Scholar 

  • Godfrey T & Reichelt J (1983) Industrial Applications. In: Industrial Enzymology, (pp 170–465). Stockton Press, New York

    Google Scholar 

  • Guterman H & Shabtai YA (1996) A self-tuning vision system for monitoring biotechnological processes. I. Application to production of pullulan by Aureobasidium pullulans. Biotechnol. Bioeng. 51: 501–510

    Google Scholar 

  • Imanaka T & Aiba S (1977) A kinetic model of catabolite repression in the dual control mechanism in microorganisms. Biotechnol. Bioeng. 19: 757–764

    Google Scholar 

  • Manachini PL, Parini C & Fortina Mg (1988) Pectic enzymes from Aureobasidium pullulans LV10. Enzyme Microb. Technol. 10: 682–685

    Google Scholar 

  • McNeil B & Kristiansen B (1990) Temperature effects on polysaccharide formation by Aureobasidium pullulans in stirred tanks. Enzyme Microb. Technol. 12: 521–526

    Google Scholar 

  • Moresi M, Pertuccioli M & Federici F (1991) Modelling of cyclic fed-batch plus batch polygalacturonase production by Aureobasidium pullulans on raw orange peel. Appl. Microbiol. Biotechnol. 34: 742–748

    Google Scholar 

  • Mulchandani A, Luong JHT & Leduy A (1988) Batch kinetics of microbial polysaccharide biosynthesis. Biotechnol. Bioeng. 32: 639–646

    Google Scholar 

  • Nelson N (1944) A photometric adaption of the Somogyi method for the determination of glucose. J. Biol. Chem. 153: 375–380

    Google Scholar 

  • Parini C, Grazia Fortina M & Manachini PL (1988) Properties of two pectin lyases produced by Aureobasidium pullulans LV 10. J. Appl. Bacteriol. 65: 477–481

    Google Scholar 

  • Pasari AB, Korus RA, Williams RA & Heimsch RC (1987) Catabolite repression of amylase synthesis in yeast. Biotechnol. Bioeng. 30: 363–367

    Google Scholar 

  • Reeslev M, Jorgensen BB & Jorgensen OB (1996) Exopolysaccharide production and morphology of Aureobasidium pullulans grown in continuous cultivation with varying ammonium - glucose ratio in the growth medium. J. Biotechnol. 51: 131–135

    Google Scholar 

  • Ros JM, Saura D, Salmeron MC & Laencina J (1993) Production of pectin enzymes from Rhizopus nigricans cultures with different sources of carbon. Annali di Microbiologia ed Enzimologia. 43: 71–76

    Google Scholar 

  • Sakai T & Takaoka A (1985) Purification crystalization and some properties of endo-polygalacturonase from Aureobasidium pullulans. Agric. Biol. Chem. 49: 449–458

    Google Scholar 

  • Seviour RJ, Stasinopoulos SJ, Auer DPF & Gibbs PA (1992) Production of pullulan and other exopolysaccharides by filamentous fungi. Crit. Rev. Biotechnol. 12: 279–298

    Google Scholar 

  • Simon L, Bouchet B, Caye-Vauglen C & Gallant DJ (1995) Pullulan elaboration and differentiation of the resting forms in it Aureobasidium pullulans. Can. J. Microbiol. 40: 35–45

    Google Scholar 

  • Somogyi M (1952) Notes on Sugar Determination. J. Biol. Chem. 195: 19–23

    Google Scholar 

  • Tuttobello R & Mill PJ (1961) The pectic enzymes of Aspergillus niger. Biochem. J. 79: 51–64

    Google Scholar 

  • Ueda S, Fujita K, Komatsu K & Nakashima Z (1963) Polysaccharide produced by the genus Pullularia. I. Production of polysaccharide by growing cells. Applied Microbiology 11: 211–215

    Google Scholar 

  • West TP & Redd-Hammer B (1991) Ability of Aureobasidium pullulans to syntesize pullulan upon selected sources of carbon and nitrogen. Microbios 67: 117–124

    Google Scholar 

  • Ykema A, Verbree EC, Verseveld HW & Smit H (1986) Mathematical modelling of lipid production by oleaginous yeasts in continuous culteres. Antonie van Leeuwenhoek 52: 491–506

    Google Scholar 

  • Yuen S (1994) Pullulan and its applications. Process Biochem. 9: 7–9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galiotou-Panayotou, M., Kalantzi, O. & Aggelis, G. Modelling of simultaneous production of polygalacturonase and exopolysaccharide by Aureobasidium pullulans ATHUM 2915. Antonie Van Leeuwenhoek 73, 155–162 (1998). https://doi.org/10.1023/A:1000657403593

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1000657403593

Navigation