Skip to main content
Log in

Turbulence and Coherent Organizations in the Atmospheric Boundary Layer: A Radar-Aircraft Experimental Approach

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The scientific objective of the TRAC experiment (Turbulence Radar Aircraft Cells) was to investigate the respective roles played by small-scale turbulence and coherent structures in the vertical transfer within the atmospheric boundary layer (ABL). Field research held in June 1993 in France was based on coupled aircraft and Doppler radar measurements. The results discussed here are mainly focused on the evaluation of the performance of the radar in the 3D description of the clear air ABL, which was the technical goal of TRAC. During the experiment, the radar was able to provide continuous and coherent echo fields over a range of several tens of kilometres, extending up to about 3 km. Good agreement was obtained in the ABL between the radar-derived turbulent quantities and airborne measurements. As depicted by the reflectivity fields, coherent organizations were found to be a common feature of the eleven ABL cases analyzed. These organizations evolved during the day between a banded structure and a cellular pattern. A very weak correlation was found between the reflectivity field and the atmospheric parameters measured by the aircraft. However, in terms of characteristic scale, the reflectivity field appeared to be strongly related to the water vapour field. The inhomogeneity induced by the coherent circulations questions the representativity of one-dimensional sampling of these 3D fields and suggests the need to adapt the traditional statistical approach of the ABL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Arya, S. P. S. and Sundarajan, A.: 1976, 'An Assessment of Proposed Similarity Theories for the Atmosphere Boundary Layer', Boundary-Layer Meteorol. 40, 149-166.

    Google Scholar 

  • Busch, N. E.: 1973, 'The Surface Boundary Layer (PART I)', Boundary-Layer Meteorol. 4, 213-240.

    Google Scholar 

  • Campistron, B., Long, A. B., and Huggins, A. W.: 1991, 'A Method of Retrieving Turbulence Parameters from Volume Processing of Single Doppler Radar Measurements.', J. Atmos. Oceanic Tech. 8, 491-505.

    Google Scholar 

  • Clarke, R. H., Dyer, A. J., Brook, R. R., Reid, D. G., and Troup, A. J.: 1971, 'The Wangara Experiment, Boundary Layer Data', CSIRO Australia, Div. Meteor. Phys., Tech. Pap. 19, 340.

    Google Scholar 

  • Caughey, S. J. and Palmer, S. G.: 1979, 'Some Aspect of Turbulence Structure Parameters of the Convective Boundary Layer', J. Atmos. Sci. 45, 853-864.

    Google Scholar 

  • Caughey, S. J. and Kaimal, J. C.: 1977, 'Vertical Heat Flux in the Convective Boundary Layer', Quart. J. Roy. Meteorol. Soc. 103, 811-815.

    Google Scholar 

  • Cressman, G. W.: 1959, 'An Operational Objective Analysis System', Mon. Wea. Rev. 87, 367-374.

    Google Scholar 

  • Christian, T. W. and Wakimoto, R. M.: 1989, 'The Relationship Between Radar Reflectivities and Clouds Associated with Horizontal Roll Convection on 8 August 1982', Mon. Wea. Rev. 117, 1530-1544.

    Google Scholar 

  • Delahaye, J. L. and Lavergnat, J.: 1994, 'Mesure de l'humidité de l'air au moyen d'un réfractomètre', Bull. BNM 98, 65-72.

    Google Scholar 

  • Deardoff, J. W.: 1970, 'Convective Velocity and Temperature Scales for the Unstable Planetary Boundary Layer for Rayleigh Convection', J. Atmos. Sci. 27, 1211-1212.

    Google Scholar 

  • Doviak, R. J. and Zrnic, D. S.: 1993, Doppler Radar and Weather Observations, Academic Press Inc., New York, 562 pp.

    Google Scholar 

  • Doviak, R. J. and Berger, M.: 1980, 'Turbulence and Waves in the Optically Clear Planetary Boundary Layer Resolved by Dual-Doppler Radars', Radio Science 15, 297-317.

    Google Scholar 

  • Druilhet, A., Frangi, J. P., Guédalia, D., and Fontan, J.: 1983, 'Experimental Studies of the Turbulence Structure Parameters of the Convective Boundary Layer', J. Atmos. Sci. 45, 853-864.

    Google Scholar 

  • Druilhet, A., Lohou, F., Campistron, B., and Redelsperger, J. L.: 1996, 'The Influence of the Coherent Structures on the Evaluation of the Exchange Properties and Energy Fluxes in the Atmospheric Boundary Layer', European Geophysical Society, XXI General Assembly, The Hague, The Netherlands, C473.

  • Ferrare, R. A., Schols, J. L., and Eloranta, E. W.: 1991, 'Lidar Observations of Banded Convection during BLX83', J. Appl. Meteorol. 30, 312-326.

    Google Scholar 

  • Frisch, A. S. and Clifford, S. P.: 1974, 'A Study of Convection Capped by a Stable Layer using Doppler Radar and Acoustic Echo Sounders', J. Atmos. Sci. 31, 1622-1628.

    Google Scholar 

  • Gal-Chen, T., Xu, M., and Eberhard, W. L.: 1992, 'Estimation of Atmospheric Boundary Layer Fluxes and Other Turbulence Parameters from Doppler Lidar Data', J. Geophys. Res. 97, 18,409-18,423.

    Google Scholar 

  • Gossard, E. E. and Strauch, R. G.: 1983, Radar Observation of Clear Air and Clouds, Elsevier Sciences Publishing Company Inc., Amsterdam, 280 pp.

    Google Scholar 

  • Grossman, R. L.: 1982, 'An Analysis of Vertical Velocity Spectra Obtained in the BOMEX Fair-Weather, Trade-Wind Boundary Layer', Boundary-Layer Meteorol. 23, 323-357.

    Google Scholar 

  • Goutorbe, J. P., Lebel, T., Tinga, A., Bessemoulin, P., Brouwer, J., Dolman, A. J., Engman, E. T., Gash, J. H. C., Hoepffner, M., Kabat, P., Kerr, Y. H., Monteny, B., Prince, S., Said, F., Sellers, P., and Wallace, J.: 1994, 'HAPEXSAHEL: A Large Scale Study of Land Atmosphere Interactions in the Semi-Arid Tropics', Ann. Geophysicae 12, 53-64.

    Google Scholar 

  • Hardy, K. R. and Ottersten, H.: 1969, 'Radar Investigations of Convective Patterns in the Clear Atmosphere', J. Atmos. Sci. 26, 666-672.

    Google Scholar 

  • Kaimal, J. C., Wingaard, J. C., Haugen, D. A., Coté, O. R., and Izumi, Y.: 1976, 'Turbulence Structure in the Convective Boundary Layer', J. Atmos. Sci. 33, 2152-2168.

    Google Scholar 

  • Knight, C. A. and Miller, L. J.: 1993, 'First Radar Echoes from Cumulus Clouds', Bull. Amer. Meteorol. Soc. 74, 179-188.

    Google Scholar 

  • Kropfli, R. A. and Khon, N. M.: 1978, 'Persistent Rolls in the Urban Mixed Layer as Revealed by Dual-Doppler Radar', J. Appl. Meteorol. 17, 671-676.

    Google Scholar 

  • Kropfli, R. A.: 1986, 'Single Doppler Radar Measurements of Turbulence Profiler in the Convective Boundary Layer', J. Atmos. Oceanic Tech. 3, 305-314.

    Google Scholar 

  • Kuettner, J.: 1971, 'Cloudbands on the Earth's Atmosphere: Observations and Theory', Tellus 23, 404-425.

    Google Scholar 

  • Labitt, M.: 1981, 'Coordinated Radar and Aircraft Observations of Turbulence', Proj. Rep. ATC 108, Massachussetts Institute of Technology, Lincoln Lab., Cambridge.

    Google Scholar 

  • Lenschow, D. H., Wyngaard, J. C., and Pennel, W. T.: 1980, 'Mean-Field and Second Moment Budgets in a Baroclinic, Convective Boundary Layer', J. Atmos. Sci. 27, 1313-1326.

    Google Scholar 

  • Lenschow, D. H. and Stephen, P. L.: 1982, 'The Role of Thermals in the Convective Boundary Layer', Boundary-Layer Meteorol. 19, 509-532.

    Google Scholar 

  • Lenschow, D. H. and Stankov, B. B.: 1986, 'Length Scales in the Convective Boundary Layer', J. Atmos. Sci. 43, 1198-1209.

    Google Scholar 

  • Lenschow, D. H., Mann, J., and Kristensen, L.: 1994, 'How Long is Long Enough when Measuring Fluxes and Other Turbulence Statistics?', J. Atmos. Oceanic Tech. 11, 661-673.

    Google Scholar 

  • Levich, E., Shtilman, L. and Tur, A. V.: 1991, 'The Origin of Coherence in Hydrodynamical Turbulence', Physica 176, 214-296.

    Google Scholar 

  • Lohou, F., Druilhet, A., Foster, P., Campistron, B., Gervaise, C., Loubet, A., and Delahaye, J. Y.: 1995, 'Measurements of Cn2 in the Lower Atmosphere with an Airborne Refractometer. Comparison with Simultaneous Doppler Radar Observations', in 27th Conference on Radar Meteorology, Vail, Colorado, pp. 290-292.

  • Neff, W. D.: 1975, 'Quantitative Evaluation of Acoustic Echoes from the Planetary Boundary Layer', Technical Report ERL 322WPL, NOAA, Boulder, Colo., 34-38.

    Google Scholar 

  • Neff, W. D. and Coulter, R. L.: 1986, 'Acoustic Remote Sounding', in D. H. Lenschow (ed.), Probing the Atmospheric Boundary Layer, Amer. Meteorol. Soc., Boston, Mass., pp. 201-236.

    Google Scholar 

  • Rabin, R. M., Doviak, R. J., and Sundara-Rajan, A.: 1982, 'Doppler Radar Observations of Momentum Flux in a Cloudless Convective Layer with Rolls', J. Atmos. Sci. 39, 851-863.

    Google Scholar 

  • Reinking, R. F., Doviak, R. J., and Gilmer, G. O.: 1981, 'Clear Air Roll Vortices and Turbulent Motions as Detected with an Airborne Gust Probe and Dual Doppler Radar', J. Appl. Meteorol. 20, 678-685.

    Google Scholar 

  • Scialom, G. and Lemaître, Y.: 1990, 'A New Analysis for Retrieval of Tree Dimensional Mesoscale Wind Fields from Multiple Doppler Radar', J. Atmos. Oceanic Tech. 7, 640-665.

    Google Scholar 

  • Sellers, P. J., Hall, F. G., Asrar, G., Strebel, D. E., and Murphy, R. E.: 1988, 'The First ISLSCP Field Experiment (FIFE)', Bull. Amer. Meteorol. Soc. 69, 22-27.

    Google Scholar 

  • Sellers, P. J., Hall, F., Margolis, H., Kelly, B., Baldocchi, D., den Hartog, G., Cihlar, J., Ryan, M. G., Goodison, B., Crill, P., Ranson, K. J., Lettenmaier, D., and Wickland, D. E.: 1995, 'The Boreal Ecosystem-Atmosphere Study (BOREAS): An Overview and Early Results from the 1994 Field Year', Bull. Amer. Meteorol. Soc. 9, 1549-1577.

    Google Scholar 

  • Tur, A. V. and Levich, E.: 1992, 'The Origin of Organized Motion in Turbulence', Fluid Dyn. Res. 10, 75-90.

    Google Scholar 

  • Waldteufel, P. and Corbin, H.: 1979, 'On the Analysis of Single-Doppler Data', J. Appl. Meteorol. 18, 532-542.

    Google Scholar 

  • Weill, A., Klapisz, C., Strauss, B., Baudin, F., Jaupart, C., Van Grunderbeeck, P., and Goutorbe, J. P.: 1980, 'Measuring Heat Flux and Structure Functions of Temperature Fluctuations with an Acoustic Doppler Sodar', J. Appl. Meteorol. 19, 199-205.

    Google Scholar 

  • Wilson, W. J., Weckwerth, T., Vivekanandan, J., Wakimoto, R. M., and Russel, R. W.: 1994, 'Boundary Layer Clear-Air Radar Echoes: Origin of Echoes and Accuracy of Derived Winds', J. Atmos. Oceanic Tech. 11, 1184-1205.

    Google Scholar 

  • Xu, M. and Gal-Chen, T.: 1993, 'A Study of the Convective Boundary Layer Using Single Doppler Radar Measurements', J. Atmos. Sci. 21, 3641-3662.

    Google Scholar 

  • Zilitinchevich, S. S.: 1975, 'Resistance Laws Prediction for the Depth of the Planetary Boundary Layer', J. Atmos. Sci. 32, 741-752.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lohou, F., Campistron, B., Druilhet, A. et al. Turbulence and Coherent Organizations in the Atmospheric Boundary Layer: A Radar-Aircraft Experimental Approach. Boundary-Layer Meteorology 86, 147–179 (1998). https://doi.org/10.1023/A:1000613232592

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1000613232592

Navigation