Skip to main content
Log in

Statistics of Surface-Layer Turbulence Over Terrain with Metre-Scale Heterogeneity

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Refuge has patchy vegetation in sandy soil. During midday and at night, the surface sources and sinks for heat and moisture may thus be different. Although the Sevilleta is broad and level, its metre-scale heterogeneity could therefore violate an assumption on which Monin-Obukhov similarity theory (MOST) relies. To test the applicability of MOST in such a setting, we measured the standard deviations of vertical (σw) and longitudinal velocity (σu), temperature (σt), and humidity (σq), the temperature-humidity covariance (¯tq), and the temperature skewness (St). Dividing the former five quantities by the appropriate flux scales (u*, *, and q*) yielded the nondimensional statistics σw/u*, σu/u*, σt/|t*|, σq/|q*|, and ¯tq/t*q*. σw/u*, σt/|t*|, and St have magnitudes and variations with stability similar to those reported in the literature and, thus, seem to obey MOST. Though σu/u* is often presumed not to obey MOST, our σu/u* data also agree with MOST scaling arguments. While σq/|q*| has the same dependence on stability as σt/|t*|, its magnitude is 28% larger. When we ignore ¯tq/t*q* values measured during sunrise and sunset transitions – when MOST is not expected to apply – this statistic has essentially the same magnitude and stability dependence as (σt/t*)2. In a flow that truly obeys MOST, (σt/t*)2, (σq/q*)2, and ¯tq/t*q* should all have the same functional form. That (σq/q*)2 differs from the other two suggests that the Sevilleta has an interesting surface not compatible with MOST. The sources of humidity reflect the patchiness while, despite the patchiness, the sources of heat seem uniformly distributed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreas, E. L. and Murphy, B.: 1986, ‘Bulk Transfer Coefficients for Heat and Momentum over Leads and Polynyas’, J. Phys. Oceanogr. 16, 1875-1883.

    Google Scholar 

  • Andreas, E. L. and Paulson, C. A.: 1979, ‘Velocity Spectra and Cospectra and Integral Statistics over Arctic Leads’, Quart. J. Roy. Meteorol. Soc. 105, 1053-1070.

    Google Scholar 

  • Antonia, R. A., Chambers, A. J., and Bradley, E. F.: 1981, ‘Temperature Structure in the Atmospheric Surface Layer: II. The Budget of Mean Cube Fluctuations’, Boundary-Layer Meteorol. 20, 293-307.

    Google Scholar 

  • Ariel, N. Z. and Nadezhina, Ye. D.: 1976, ‘Dimensionless Turbulence Characteristics under Various Stratification Conditions’, Izv., Atmos. Oceanic Phys. 12, 492-497.

    Google Scholar 

  • Beljaars, A. C. M. and Holtslag, A. A. M.: 1991, ‘Flux Parameterization over Land Surfaces for Atmospheric Models’, J. Appl. Meteorol. 30, 327-341.

    Google Scholar 

  • Beljaars, A. C. M., Schotanus, P., and Nieuwstadt, F. T. M.: 1983, ‘Surface Layer Similarity under Nonuniform Fetch Conditions’, J. Clim. Appl. Meteorol. 22, 1800-1810.

    Google Scholar 

  • Bradley, E. F. and Antonia, R. A.: 1979, ‘Structure Parameters in the Atmospheric Surface Layer’, Quart. J. Roy. Meteorol. Soc. 105, 695-705.

    Google Scholar 

  • Brutsaert, W. A.: 1982, Evaporation into the Atmosphere: Theory, History, and Applications, D. Reidel, Dordrecht, 299 pp.

    Google Scholar 

  • Businger, J. A.: 1973, ‘Turbulent Transfer in the Atmospheric Surface Layer’, in D. A. Haugen (ed.), Workshop on Micrometeorology, American Meteorological Society, Boston, pp. 67-100.

    Google Scholar 

  • De Bruin, H. A. R., Kohsiek, W., and Van Den Hurk, B. J. J. M.: 1993, ‘A Verification of Some Methods to Determine the Fluxes of Momentum, Sensible Heat, and Water Vapour Using Standard Deviation and Structure Parameter of Scalar Meteorological Quantities’, Boundary-Layer Meteorol. 63, 231-257.

    Google Scholar 

  • Dias, N. L., Brutsaert, W., and Wesely, M. L.: 1995, ‘Z-less Stratification under Stable Conditions’, Boundary-Layer Meteorol. 75, 175-187.

    Google Scholar 

  • Gosz, J. R.: 1993, ‘Ecotone Hierarchies’, Ecol. Appl. 3, 369-376.

    Google Scholar 

  • Gosz, J. R.: 1995, ‘Edges and Natural Resource Management: Future Directions’, Ecol. Int. 22, 17-34.

    Google Scholar 

  • Hedde, T. and Durand, P.: 1994, ‘Turbulence Intensities and Bulk Coefficients in the Surface Layer above the Sea’, Boundary-Layer Meteorol. 71, 415-432.

    Google Scholar 

  • Hess, G. D.: 1992, ‘Observations and Scaling of the Atmospheric Boundary Layer’, Aust. Meteorol. Mag. 41, 79-99.

    Google Scholar 

  • Hill, R. J.: 1989, ‘Implications of Monin-Obukhov Similarity Theory for Scalar Quantities’, J. Atmos. Sci. 46, 2236-2244.

    Google Scholar 

  • Hill, R. J., Otto, W. D., Sarma, A. D., Wilson, J. J., Andreas, E. L., Gosz, J. R., and Moore, D. I.: 1997, ‘An Evaluation of the ScintillationMethod for Obtaining Fluxes of Momentum and Heat’, NOAA Tech. Memo. ERL ETL275, Environmental Technology Laboratory, Boulder, Colo., 55pp.

    Google Scholar 

  • Högström, U.: 1990, ‘Analysis of Turbulence Structure in the Surface Layer with a Modified Similarity Formulation for Near Neutral Conditions’, J. Atmos. Sci. 47, 1949-1972.

    Google Scholar 

  • Kader, B. A. and Yaglom, A. M.: 1990, ‘Mean Fields and Fluctuation Moments in Unstably Stratified Turbulent Boundary Layers’, J. Fluid Mech. 212, 637-662.

    Google Scholar 

  • Kaimal, J. C. and Finnigan, J. J.: 1994, Atmospheric Boundary Layer Flows: Their Structure and Measurement, Oxford University Press, New York, 289 pp.

    Google Scholar 

  • Kaimal, J. C. and Gaynor, J. E.: 1991, ‘Another Look at Sonic Thermometry’, Boundary-Layer Meteorol. 56, 401-410.

    Google Scholar 

  • Kaimal, J. C., Gaynor, J. E., Zimmerman, H. A., and Zimmerman, G. A.: 1990, ‘Minimizing Flow Distortion Errors in a Sonic Anemometer’, Boundary-Layer Meteorol. 53, 103-115.

    Google Scholar 

  • Katul, G., Goltz, S. M., Hsieh, C.I., Cheng, Y., Mowry, F., and Sigmon, J.: 1995, ‘Estimation of Surface Heat and Momentum Fluxes Using the FluxVariance Method above Uniform and Nonuniform Terrain’, Boundary-Layer Meteorol. 74, 237-260.

    Google Scholar 

  • Lloyd, C. R., Culf, A. D., Dolman, A. J., and Gash, J. H. C.: 1991, ‘Estimates of Sensible Heat Flux from Observations of Temperature Fluctuations’, Boundary-Layer Meteorol. 57, 311-322.

    Google Scholar 

  • Monin, A. S. and Yaglom, A. M.: 1971, Statistical Fluid Mechanics: Mechanics of Turbulence, Vol. 1, MIT Press, Cambridge, Mass., 769 pp.

    Google Scholar 

  • Monteith, J. L.: 1980, Principles of Environmental Physics, Edward Arnold, London, 241 pp.

    Google Scholar 

  • Ohtaki, E.: 1985, ‘On the Similarity in Atmospheric Fluctuations of Carbon Dioxide, Water Vapor and Temperature over Vegetated Fields’, Boundary-Layer Meteorol. 32, 25-37.

    Google Scholar 

  • Otto, W. D., Hill, R. J., Wilson, J. J., Sarma, A. D., Gosz, J. R., Moore, D. I. and Andreas, E. L.: 1995, ‘Results from Optical Scintillometers Operated at Sevilleta, New Mexico’, NOAA Tech. Memo. ERL ETL248, Environmental Technology Laboratory, Boulder, Colo., 29 pp.

    Google Scholar 

  • Otto, W. D., Hill, R. J., Wilson, J. J., Sarma, A. D., Andreas, E. L., Gosz, J. R., and Moore, D. I.: 1996, ‘Datasets of the Scintillation Experiment at Sevilleta, New Mexico’, NOAA Tech. Memo. ERL ETL261, Environmental Technology Laboratory, Boulder, Colo., 42 pp.

    Google Scholar 

  • Panofsky, H. A.: 1973, ‘Tower Micrometeorology’, in D. A. Haugen (ed.), Workshop on Micrometeorology, American Meteorological Society, Boston, pp. 151-176.

    Google Scholar 

  • Panofsky, H. A. and Dutton, J. A.: 1984, Atmospheric Turbulence: Models and Methods for Engineering Applications, John Wiley and Sons, New York, 397 pp.

    Google Scholar 

  • Panofsky, H. A., Tennekes, H., Lenschow, D. H., and Wyngaard, J. C.: 1977, ‘The Characteristics of Turbulent Velocity Components in the Surface Layer under Convective Conditions’, Boundary-Layer Meteorol. 11, 355-361.

    Google Scholar 

  • Priestley, J. T. and Hill, R. J.: 1985, ‘Measuring High-Frequency Humidity, Temperature and Radio Refractive Index in the Surface Layer’, J. Atmos. Oceanic Technol. 2, 233-251.

    Google Scholar 

  • Raupach, M. R.: 1992, ‘Drag and Drag Partition on Rough Surfaces’, Boundary-Layer Meteorol. 60, 375-395.

    Google Scholar 

  • Roth, M.: 1993, ‘Turbulent Transfer Relationships over an Urban Surface. II: Integral Statistics’, Quart. J. Roy. Meteorol. Soc. 119, 1105-1120.

    Google Scholar 

  • Roth, M. and Oke, T. R.: 1993, ‘Turbulent Transfer Relationships over an Urban Surface. I: Spectral Characteristics’, Quart. J. Roy. Meteorol. Soc. 119, 1071-1104.

    Google Scholar 

  • Schotanus, P., Nieuwstadt, F. T. M. and De Bruin, H. A. R.: 1983, ‘Temperature Measurements with a Sonic Anemometer and Its Application to Heat and Moisture Fluxes’, Boundary-Layer Meteorol. 26, 81-93.

    Google Scholar 

  • Smedman-Högström, A.S.: 1973, ‘Temperature and Humidity Spectra in the Atmospheric Surface Layer’, Boundary-Layer Meteorol. 3, 329-347.

    Google Scholar 

  • Sorbjan, Z.: 1989, Structure of the Atmospheric Boundary Layer, Prentice Hall, Englewood Cliffs, N. J., 317 pp.

    Google Scholar 

  • Sreenivasan, K. R., Chambers, A. J., and Antonia, R. A.: 1978, ‘Accuracy of Moments of Velocity and Scalar Fluctuations in the Atmospheric Surface Layer’, Boundary-Layer Meteorol. 14, 341-359.

    Google Scholar 

  • Stanhill, G.: 1969, ‘A Simple Instrument for the Field Measurement of Turbulent Diffusion Flux’, J. Appl. Meteorol. 8, 509-513.

    Google Scholar 

  • Stull, R. B.: 1988, An Introduction to Boundary Layer Meteorology, Kluwer, Dordrecht, 666 pp.

  • Tillman, J. E.: 1972, ‘The Indirect Determination of Stability, Heat and Momentum Fluxes in the Atmospheric Boundary Layer from Simple Scalar Variables during Dry Unstable Conditions’, J. Appl. Meteorol. 11, 783-792.

    Google Scholar 

  • Turner, S. J., O'Neill, R. V., Conley, W., Conley, M. R., and Humphries, H. C.: 1991, ‘Pattern and Scale: Statistics for Landscape Ecology’, in M. G. Turner and R. H. Gardner (eds.), Quantitative Methods in Landscape Ecology, Springer-Verlag, New York, 17-49.

    Google Scholar 

  • Wang, J. and Mitsuta, Y.: 1991, ‘Turbulence Structure and Transfer Characteristics in the Surface Layer of the HEIFE Gobi Area’, J. Meteorol. Soc. Japan 69, 587-593.

    Google Scholar 

  • Weaver, H. L.: 1990, ‘Temperature and Humidity Flux-Variance Relations Determined by One-Dimensional Eddy Correlation’, Boundary-Layer Meteorol. 53, 77-91.

    Google Scholar 

  • Wieringa, J.: 1993, ‘Representative Roughness Parameters for Homogeneous Terrain’, Boundary-Layer Meteorol. 63, 323-363.

    Google Scholar 

  • Wyngaard, J. C.: 1973, ‘On SurfaceLayer Turbulence’, in D. A. Haugen (ed.), Workshop on Micrometeorology, American Meteorological Society, Boston, pp. 101-149.

    Google Scholar 

  • Wyngaard, J. C. and Brost, R. A.: 1984, ‘Top-down and Bottom-up Diffusion of a Scalar in the Convective Boundary Layer’, J. Atmos. Sci. 41, 102-112.

    Google Scholar 

  • Wyngaard, J. C. and Sundararajan, A.: 1979, ‘The Temperature Skewness Budget in the Lower Atmosphere and Its Implications for Turbulence Modeling’, in F. Durst, B. E. Laundere, F. W. Schmidt, and J. H. Whitelaw (eds.), Turbulent Shear Flows I, Springer-Verlag, Berlin, 319-326.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreas, E.L., Hill, R.J., Gosz, J.R. et al. Statistics of Surface-Layer Turbulence Over Terrain with Metre-Scale Heterogeneity. Boundary-Layer Meteorology 86, 379–408 (1998). https://doi.org/10.1023/A:1000609131683

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1000609131683

Navigation