Skip to main content
Log in

Formules de localisation en cohomologie equivariante

  • Published:
Compositio Mathematica

Abstract

In this paper, we develop a method of localization in equivariant cohomology based on the notion of partition of unity cohomology. We apply this method in two cases. In the first case, this method gives a refinement of the localization of Atiyah–Bott and Berline–Vergne (in the frame given by Bismut). After, we consider the Hamiltonian action of a torus, and we realise, following the idea of Witten, the localization on the critical points of the square of the moment map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Références

  1. Atiyah, M. F.: Convexity and commuting Hamiltonians, Bull. London. Math. Soc. 14 (1981), 1–15.

    Google Scholar 

  2. Atiyah, M. F.: et Bott, R.: The moment map and equivariant cohomology, Topology 23 (1984), 1–28.

    Google Scholar 

  3. Berline, N., Getzler, E. et Vergne, M.: Heat Kernels and Dirac Operators, Grundlehren Math.Wiss. 298, Springer, Berlin, 1991.

    Google Scholar 

  4. Berline, N. et Vergne, M.: Classes caractéristiques équivariantes. Formule de localisation en cohomologie équivariante, C.R. Acad. Sci. Paris 295 (1982), 539–541.

    Google Scholar 

  5. Berline, N. et Vergne, M.: Zéros d'un champ de vecteurs et classes caractéristiques équivariantes, Duke. Math. J. 50 (1983), 539–549.

    Google Scholar 

  6. Bismut, J.-M.: Localizations formulas, superconnections, and the index theorem for families, Comm. Math. Phys. 103 (1983), 127–166.

    Google Scholar 

  7. Bruguieres, A.: Propriétés de convexité de l'application moment d'après Atiyah, Guillemin– Sternberg et Kirwan, Sem. Bourbaki 654 (1985).

  8. Canas da Silva, A. et Guillemin, V.: On the Kostant multiplicity formula for group actions with non-isolated fixed points, Adv. Math. 123 (1996), 1–15.

    Google Scholar 

  9. Duistermaat, J. J.: Equivariant cohomology and stationary phase, Utrecht preprint no. 817, 1993.

  10. Duistermaat, J. J. et Heckman, G. J.: On the variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math. 69 (1982), 259–268; addendum, ibid. 72 (1983), 153–158.

    Google Scholar 

  11. Duflo, M. et Vergne, M.: Orbites coadjointes et cohomologie équivariante, in The Orbit Method in Representation Theory, Progr. Math. 82, Birkhäuser, Boston, 1990, pp. 11–60.

    Google Scholar 

  12. Duflo, M. et Vergne, M.: Cohomologie équivariante et descente, Astérisque 215 (1993), 5–108.

    Google Scholar 

  13. Guillemin, V., Lerman, E. et Sternberg, S.: On the Kostant multiplicity formula, J. Geom. Phys. 5 (1988), 721–750.

    Google Scholar 

  14. Guillemin, V. et Prato, E.: Heckman, Kostant and Steinberg formulas for symplectic manifolds, Adv. Math. 82 (1990), 160–179.

    Google Scholar 

  15. Guillemin, V. et Sternberg, S.: Convexity properties of the moment map, Invent. Math. 67 (1982), 491–513.

    Google Scholar 

  16. Jeffrey, L. et Kirwan, F.: Localization for non-Abelian group action, Topology 34 (1995), 291–327.

    Google Scholar 

  17. Kawasaki, T.: The signature theorem for V-manifold, Topology 17 (1978), 75–83.

    Google Scholar 

  18. Kirwan, F.: Cohomology of Quotients in Symplectic and Algebraic Geometry, Princeton Univ. Press, Princeton, 1984.

    Google Scholar 

  19. Kumar, S. et Vergne, M.: Equivariant cohomology with generalized coefficients, Astérisque 215 (1993), 109–204.

    Google Scholar 

  20. Mathai, V. et Quillen, D.: Superconnexions, Thom classes, and equivariant differential forms, Topology 25 (1986), 85–110.

    Google Scholar 

  21. Paradan, P.-E.: Formule de localisation en cohomologie équivariante, Thèse, Université Paris 7 – Denis Diderot, 1996.

  22. Satake, I.: On a generalization of the notion of manifold, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 359–363; the Gauss–Bonnet theorem for V-manifold, J. Math. Soc. Japan 9 (1957), 464–492.

    Google Scholar 

  23. Vergne, M.: A note on the Jeffrey–Kirwan–Witten localization formula, Topology 34 (1996), 243–266.

    Google Scholar 

  24. Weinstein, A.: Symplectic V-manifold, periodic orbits of Hamiltonian systems, and the volume of certain Riemannian manifolds, Comm. Pure. Appl. Math. 30 (1977), 265–271.

    Google Scholar 

  25. Witten, E.: Two-dimensional gauge theories revisited, J. Geom. Phys. 9 (1992), 303–368.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paradan, PE. Formules de localisation en cohomologie equivariante. Compositio Mathematica 117, 243–293 (1999). https://doi.org/10.1023/A:1000602914188

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1000602914188

Navigation