Boundary-Layer Meteorology

, Volume 85, Issue 3, pp 391–421 | Cite as

Impact of Atmospheric Surface-layer Parameterizations in the new Land-surface Scheme of the NCEP Mesoscale Eta Model

  • Fei Chen
  • Zavisă Janjić
  • Kenneth Mitchell


We tested three atmospheric surface-layer parameterization schemes (Mellor-Yamadalevel 2, Paulson, and modified Louis), both ina 1-D mode in the new NCEP land-surface scheme against long-term FIFE and HAPEX observations, and in a coupled 3-D mode withthe NCEP mesoscale Eta model. The differences inthese three schemes and the resulting surface exchange coefficients do not, in general, lead to significant differences in model simulated surface fluxes, skin temperature, andprecipitation, provided the same treatment of roughness length for heat is employed.Rather, the model is more sensitive to the choice of the roughness length for heat. To assess the latter, we also tested two approaches to specifythe roughness length for heat: 1) assuming the roughness length for heat is a fixed ratio of the roughness length for momentum, and 2) relating this ratio to the roughness Reynolds number as proposed by Zilitinkevich.Our 1-D column model sensitivity tests suggested that the Zilitinkevich approach can improve the surface heat fluxand skin temperature simulations. A long-term test with the NCEP mesoscaleEta model indicated that this approach can also reduce forecast precipitation bias. Based on these simulations, in January 1996 we operationally implemented the Paulsonscheme with the new land-surface scheme of the NCEP Eta model, along with the Zilitinkevich formulation to specify the roughness length for heat.

Surface-layer parameterization Land-surface process Roughness length for heat Soil moisture simulation Numerical weather prediction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. André, J. C., Goutorbe, J. P., and Perrier, A.: 1986, 'HAPEX-MOBILHY:A Hydrologie Atmospheric Experiment for the Study of Water Budget and Evaporation Flux at the Climate Scale', Bull. Amer. Meteorol. Soc. 67, 138–144.Google Scholar
  2. Beljaars, A. C. M. and Holtslag, A. A. M.: 1991, 'Flux Parameterization Over Land Surface for Atmospheric Models', J. Appl. Meteorol. 30, 327–341.Google Scholar
  3. Beljaars, A. C. M. and Viterbo, P.: 1994, 'The Sensitivity of Winter Evaporation to the Formulation of Aerodynamic Resistance in the ECMWF Model', Boundary-Layer Meteorol. 71, 135–149.Google Scholar
  4. Betts, A. K. and Ball, J. H.: 1993, 'FIFE-87 Compacted Surface Data Sets', Available on diskette from author (Atmospheric Research, Pittsford, VT 05763).Google Scholar
  5. Black, T.: 1994, 'The New NMCMesoscale Eta Model: Description and Forecast Examples', Weather Forecasting 9, 265–278.Google Scholar
  6. Braud, I., Noilhan, J., Bessemoulin, P., and Mascart, P.: 1993, 'Bare-Ground Surface Heat and Water Exchange Under Dry Conditions: Observations and Parameterization', Boundary-Layer Meteorol . 66, 173–200.Google Scholar
  7. Brutsaert, W. A.: 1982, Evaporation into the Atmosphere, Reidel, Dordrecht, 299 pp.Google Scholar
  8. Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, 'Flux-Profile Relationships in the Atmospheric Surface Layer', J. Atmos. Sci. 28, 181–189.Google Scholar
  9. Chen, F. and Avissar, R.: 1994, 'The Impact of Land-Surface Wetness on Mesoscale Heat Fluxes', J. Appl. Meteorol . 33, 1324–1340.Google Scholar
  10. Chen, F., Mitchell, K., Schaake, J., Xue, Y., Pan, H. L., Koren, V., Duan, Q. Y., Ek, K., and Betts, A.: 1996, 'Modeling of Land-Surface Evaporation by Four Schemes and Comparison with FIFE Observations', J. Geophys. Res. 101, 7251–7268.Google Scholar
  11. Chen, T. H., Henderson-Sellers, A., Pitman, A. J., Shao, Y., Boone, A., Chen, F., Desborough, C. A., Dickinson, R. E., Ek, M. B., Garratt, J. R., Gedney, N., Gusev, Y. M., Koster, R., Kowalczyk, E., Laval, K., Lean, J., Lettenmaier, D., Liang, X., Mahfouf, J.-F., Mitchell, K., Nasonova, O. N., Noilhan, J., Polcher, J., Robock, A., Schlosser, A., Schulz, J. P., Shmakin, A. B., Verseghy, D. L., Wetzel, P., Wood, E. F., Xue Y., and Yang, Z.-L.: 1997, 'Cabauw Experimental Results from the Project for Intercomparison of Land-Surface Parameterization Schemes (PILPS)', J. Clim., in press.Google Scholar
  12. Dyer, A. J.: 1974, 'A Review of Flux-Profile Relationships', Boundary-Layer Meteorol. 7, 363–372.Google Scholar
  13. Ek, M. and Mahrt, L.: 1991, OSU 1-D PBL Model User's Guide, Department of Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331–2209.Google Scholar
  14. Garratt, J. R.: 1992, The Atmospheric Boundary Layer, Cambridge University Press, Cambridge, 316 pp.Google Scholar
  15. Garratt, J. R.: 1993, 'Sensitivity of Climate Simulations to Land-Surface and Atmospheric Boundary-Layer Treatments-A Review', J. Clim. 6, 419–449.Google Scholar
  16. Goutorbe, J. P.: 1991, 'A Critical Assessment of the SAMER Network Accuracy', in Schmugge and André (eds.), Land-Surface Evaporation, Springer-Verlag, Berlin, pp. 171–182.Google Scholar
  17. Högström, U. L. F.: 1988, 'Non-Dimensional Wind and Temperature Profiles in the Atmospheric Surface Layer: A Re-Evaluation', Boundary-Layer Meteorol. 42, 55–78.Google Scholar
  18. Holtslag, A. A. M. and Beljaars, A. C. M.: 1989, 'Surface Flux Parameterization Schemes; Developments and Experiences at KNMI', in ECMWF Workshop on Parameterization of Fluxes and Land Surface, 24-26 October 1988, Reading, U.K., pp. 121–147.Google Scholar
  19. Hopwood, W. P.: 1995, 'Surface Transfer of Heat and Momentum Over an Inhomogeneous Vegetated Land', Quart. J. Roy. Meteorol. Soc. 121, 1549–1574.Google Scholar
  20. Jacquemin, B. and Noilhan, J.: 1990, 'Sensitivity Study and Validation of a Land Surface Parameterization using the HAPEX-MOBILHY Data Set', Boundary-Layer Meteorol. 52, 93–134.Google Scholar
  21. Janjić, Z. I.: 1990, 'The Step-Mountain Coordinate: Physical Package', Mon. Wea. Rev. 118, 1429–1443.Google Scholar
  22. Janjić, Z. I.: 1994, 'The Step-Mountain Eta Coordinate Model: Further Development of the Convection, Viscous Sublayer, and Turbulence Closure Schemes', Mon. Wea. Rev. 122, 927–945.Google Scholar
  23. Kim, J. and Ek, M.: 1995, 'A Simulation of the Surface Energy Budget and Soil Water Content Over the Hydrologic Atmospheric Pilot Experiments-Modelisation du Bilan Hydrique Forest Site', J. Geophys. Res. 100, 20845–20854.Google Scholar
  24. Kubota, A. and Sugita, M.: 1994, 'Radiometrically Determined Skin Temperature and Scalar Roughness to Estimate Surface Heat Flux. Part I: Parameterization of Radiometric Scalar Roughness', Boundary-Layer Meteorol. 69, 397–416.Google Scholar
  25. Łobocki, L.: 1993, 'A Procedure for the Derivation of Surface-Layer Bulk Relationships from Simplified Second Order Closure Models', J. Appl. Meteorol. 32, 126–138.Google Scholar
  26. Louis, J. F.: 1979, 'A Parametric Model of Vertical Eddy Fluxes in the Atmosphere', Boundary-Layer Meteorol . 17, 187–202.Google Scholar
  27. Mahfouf, J. F.: 1990, 'A Numerical Simulation of the Surface Water Budget during HAPEXMOBILHY', Boundary-Layer Meteorol. 53, 201–222.Google Scholar
  28. Mahrt, L. and Ek, K.: 1984, 'The Influence of Atmospheric Stability on Potential Evaporation', J. Clim. Appl. Meteorol . 23, 222–234.Google Scholar
  29. Mahrt, L. and Pan, H. L.: 1984, 'A Two-Layer Model of Soil Hydrology', Boundary-Layer Meteorol. 29, 1–20.Google Scholar
  30. Marht, L.: 1987, 'Grid-Averaged Surface Fluxes', Mon. Wea. Rev. 115, 1550–1560.Google Scholar
  31. Mahrt, L.: 1996, 'The Bulk Aerodynamic Formulation Over Heterogeneous Surfaces', Boundary-Layer Meteorol . 78, 87–119.Google Scholar
  32. Mascart, P., Noilhan, J., and Giordani, H.: 1995, 'A Modified Parameterization of Flux-Profile Relationships in the Surface Layer Using Different Roughness Length Values for Heat and Momentum', Boundary-Layer Meteorol. 72, 331–344.Google Scholar
  33. Mesinger, F.: 1996, 'Improvements in Quantitative Precipitation Forecasts with the Eta Regional Model at the National Centers for Environmental Prediction: The 48-km Upgrade', Bull. Amer. Meteor. Soc. 77, 2637–2649.Google Scholar
  34. Mitchell, K. E.: 1994, 'GCIP Initiatives in Operational Mesoscale Modeling and Data Assimilation at NMC', Preprint in the AMS Fifth Conference on Global Change Studies, 23-28 January 1994, Nashiville TN.Google Scholar
  35. Noilhan J. and Planton, S.: 1989, 'A Simple Parameterization of Land Surface Processes for Meteorological Models', Mon. Wea. Rev. 117, 536–549.Google Scholar
  36. Pan, H-L. and Mahrt, L.: 1987, 'Interaction Between Soil Hydrology and Boundary-Layer Development', Boundary-Layer Meteorol. 38, 185–202.Google Scholar
  37. Paulson, C. A.: 1970, 'The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer', J. Appl. Meteorol. 9, 857–861.Google Scholar
  38. Pielke, R. A.: 1984, Mesoscale Meteorological Modeling, Academic Press, New York, 612 pp.Google Scholar
  39. Schaake, J. C., Koren, V. I., Duan, Q. Y., Mitchell, K., and Chen, F.: 1996, 'A Simple Water Balance Model (SWB) for Estimating Runoff at Different Spatial and Temporal Scales', J. Geophys. Res . 101, 7461–7475.Google Scholar
  40. Sellers, P. J., Hall, F. G., Asrar, G., Strebel, D. E., and Murphy, F. F.: 1992, 'An Overview of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE)', J. Geophys. Res. 97, 18345–18371.Google Scholar
  41. Shao, Y., and Henderson-Sellers, A: 1996, 'Modeling Soil Moisture: A Project for Intercomparison of Land Surface Parameterization Schemes Phase 2(b)', J. Geophys. Res. 101, 7227–7250.Google Scholar
  42. Smith, E. A., Crosson, W. L., and Tanner, B. D.: 1992, 'Estimation of Surface Heat and Moisture Fluxes Over a Prairie Grassland; 1. In Situ Energy Budget Measurements Incorporating a Cooled Mirror Dew Hygrometer', J. Geophys. Res. 97, 18557–18582.Google Scholar
  43. Sun, J. and Mahrt, L.: 1995, 'Determination of Surface Fluxes from the Surface Radiative Temperature', J. Atmos. Sci. 52, 1096–1104.Google Scholar
  44. Yaglom, A.M.: 1977, 'Comments on Wind and Temperature Flux-Profile Relationships', Boundary-Layer Meteorol . 11, 89–102.Google Scholar
  45. Zilitinkevich, S. S.: 1995, 'Non-Local Turbulent Transport: Pollution Dispersion Aspects of Coherent Structure of Convective Flows', in H. Power, N. Moussiopoulos, and C. A. Brebbia (eds.), Air Pollution III-Volume I. Air Pollution Theory and Simulation, Computational Mechanics Publications, Southampton, Boston, pp. 53–60.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Fei Chen
    • 1
  • Zavisă Janjić
    • 1
  • Kenneth Mitchell
    • 2
  1. 1.Environmental Modeling Center, NCEP(NWS/NOAA)Camp SpringsU.S.A
  2. 2.Environmental Modeling Center, NCEP(NWS/NOAA)Camp SpringsU.S.A

Personalised recommendations