Skip to main content
Log in

Phosphate transport in prokaryotes: molecules, mediators and mechanisms

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Bacteria have evolved sophisticated P>i transport systems which combine high affinity with coupling to metabolic energy. This review discusses the current evidence concerning the physiological, biochemical, and molecular properties of these P>i transport systems in prokaryotes. Major developments of the past years will be presented with emphasis on three kinds of issues. First, work on P>i transport in Escherichia coli and the polyphosphate-accumulating Acinetobacter johnsonii has assigned a novel biochemical mechanism and provided additional descriptive information for the transport of P>i and divalent cations. It is therefore appropriate to summarize these new facts and emphasize their general relevance for pro- and eukaryotic cells. Second, recent work on the bioenergetics of P>i transport in A. johnsonii has demonstrated the profound role of the transmembrane P>i gradient in energy transducing processes such as the accumulation of solutes, and the generation of a proton motive force. These findings and their significance for the survival of the cell during metabolic stress conditions will be discussed. Finally, polyphosphate-accumulating microorganisms play a valuable role in biotechnological applications, such as in wastewater treatment. As such organisms are still underrepresented in current molecular microbiological studies, the investigations in A. johnsonii described here may serve as a useful precedent for those to come.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfasi H, Friedberg D & Friedberg I (1979) Phosphate transport in arsenate-resistant mutants of Micrococcus lysodeikticus. J. Bacteriol. 137: 69–72

    Google Scholar 

  • Ambudkar SV & Maloney PC (1984) Characterization of phosphate:hexose-6-phosphate antiport in membrane vesicles of Streptococcus lactis. J. Biol. Chem. 259: 12576–12585

    Google Scholar 

  • Ambudkar SV & Rosen BP (1990) Ion-exchange systems in prokaryotes. In: Krulwhich TA (Ed) The Bacteria, Vol XII (pp 247–271). Academic Press, New York

    Google Scholar 

  • Ambudkar SV, Larson TJ & Maloney PC (1986a) Reconstitution of sugar phosphate transport systems of Escherichia coli. J. Biol. Chem. 261: 9083–9086

    Google Scholar 

  • Ambudkar SV, Sonna LA & Maloney PC (1986b) Variable stoichiometry of phosphate-linked anion exchange in Streptococcus lactis: implications for the mechanism of sugar-phosphate transport by bacteria. Proc. Natl. Acad. Sci. USA 83: 280–284

    Google Scholar 

  • Amemura M, Makino K, Shinagawa H & Nakata A (1986) Nucleotide sequence of the phoM region of Escherichia coli: four open reading frames may constitute an operon. J. Bacteriol. 168: 294–302

    Google Scholar 

  • Amemura M, Makino K, Shinagawa H & Nakata A (1990) Cross talk to the phosphate regulon of Escherichia coli by PhoM protein: PhoM is a histidine kinase and catalyzes phosphorylation of PhoB and PhoM-open reading frame 2. J. Bacteriol. 172: 6300–6307

    Google Scholar 

  • Ames GF-L, Mimura CS & Shyamala V (1990) Bacterial periplasmic permeases belong to a family of transport proteins operating from Escherichia coli to human: Traffic ATPases. FEMS Microbiol. Rev. 75: 429–446

    Google Scholar 

  • Ando A, Irie S, Masuda LM, Matshushita T, Fujii T, Yabuki M & Kusaka I (1983) H+-or K+-dependent transport systems of phosphate in alkalophilic Bacillus. Biochim. Biophys. Acta 734: 290–294

    Google Scholar 

  • Archibald FS & Duong M-N (1984) Manganese acquisition by Lactobacillus plantarum. J. Bacteriol. 158: 1–8

    Google Scholar 

  • Bakker EP (1993) Cell K+ and K+ transport systems in prokaryotes. In: Bakker EP (Ed) Alkali Cation Transport Systems in Prokaryotes, (pp 205–224). CRC Press, Boca Raton

    Google Scholar 

  • Bardin S, Dan S, Osteras M & Finan TM (1996) A phosphate transport system is required for symbiotic nitrogen fixation by Rhizobium meliloti. J. Bacteriol. 178: 4540–4547

    Google Scholar 

  • Bauer K, Benz R, Brass J & Boos W (1985) Salmonella typhimurium contains an anion-selective outer membrane porin induced by phosphate starvation. J. Bacteriol. 161: 813–816

    Google Scholar 

  • Bauer K, van der Ley P, Benz R & Tommassen J (1988) The pho-controlled outer membrane porin PhoE does not contain specific binding sites for phosphate or polyphosphates. J. Biol. Chem. 263: 13046–13053

    Google Scholar 

  • Bauer K, Struyvé M, Bosch D, Benz R & Tommassen J (1989) One single lysine residue is responsible for the special interaction between polyphosphate and the outer membrane porin PhoE of Escherichia coli. J. Biol. Chem. 264: 16393–16398

    Google Scholar 

  • Beacham IR & Garrett S (1980) Isolation of Escherichia coli mutants (cpdB) deficient in periplasmic 2′:3′-cyclic phosphodiesterase and genetic mapping of the cpdB locus. J. Gen. Microbiol. 119: 31–34

    Google Scholar 

  • Bennett RL & Malamy MH (1970) Arsenate resistant mutants of Escherichia coli. Biochem. Biophys. Res. Commun. 40: 496–503

    Google Scholar 

  • Benz R, Schmid A & Hancock REW (1985) Ion selectivity of Gramnegative bacterial porins. J. Bacteriol. 162: 722–727

    Google Scholar 

  • Bergsma J & Konings WN (1983) The properties of citrate transport in membrane vesicles from Bacillus subtilis. Eur. J. Biochem. 134: 151–156

    Google Scholar 

  • Beveridge TJ & Graham LI (1991) Surface layers of bacteria. Microbiol. Rev. 55: 684–705

    Google Scholar 

  • Borneleit P & Kleber H-P (1991) The outer membrane of Acinetobacter: structure-function relationships. In: Towner KJ, Bergogne-Bérézin E & Fewson CA (Eds) The Biology of Acinetobacter, (pp 259–271). Plenum Press, New York

    Google Scholar 

  • Brandl CJ & Deber CM (1986) Hypothesis about the function of membrane-buried proline residues in transport proteins. Proc. Natl. Acad. Sci. USA 83: 917–921

    Google Scholar 

  • Brass JM, Higgins CF, Foley M, Rugman PA, Birmingham J & Garland PB (1986) Lateral diffusion of proteins in the periplasm of Escherichia coli. J. Bacteriol. 165: 787–794

    Google Scholar 

  • Breitbart H, Wehbie R & Lardy HA (1990) Calcium transport in bovine sperm mitochondria: effect of substrates and phosphate. Biochim. Biophys. Acta 1026: 57–63

    Google Scholar 

  • Brey RN & Rosen BP (1979) Cation/proton antiport systems in Escherichia coli. J. Biol. Chem. 254: 1957–1963

    Google Scholar 

  • Brzoska P, Schweizer H, Argast M & Boos W (1987) ugp-Dependent transport system for sn-glycerol-3-phosphate of Escherichia coli. In: Torriani-Gorini A, Rothman FG, Silver S, Wright A & Yagil E (Eds), Phosphate Metabolism and Cellular Regulation in Microorganisms, (pp. 170–177). American Society for Microbiology, Washington, DC

    Google Scholar 

  • Brzoska P & Boos W (1988) Characteristics of a ugp-encoded and phoB-dependent glycerophosphoryl diester phosphodiesterase which is physically dependent on the ugp transport system of Escherichia coli. J. Bacteriol. 170: 4125–4135

    Google Scholar 

  • Burnell JN, John P & Whatley FR (1975) Phosphate transport in membrane vesicles of Paracoccus denitrificans. FEBS Lett. 58: 215–218

    Google Scholar 

  • Bygrave FL, Lenton L, Altin JG, Setchell BA & Karjalainen A (1990) Phosphate and calcium uptake by mitochondria and by perfused rat liver induced by the synergistic action of glucagon and vasopressin. Biochem. J. 267: 69–73

    Google Scholar 

  • Chakrabarti AC & Deamer DW (1992) Permeability of lipid bilayers to amino acids and phosphate. Biochim. Biophys. Acta 1111: 171–177

    Google Scholar 

  • Chan F-Y & Torriani A (1996) PstB protein of the phosphate-specific transport system of Escherichia coli is an ATPase. J. Bacteriol. 178: 3974–3977

    Google Scholar 

  • Chang Z, Choudhary A, Lathigra R, Quiocho FA (1994) The immunodominant 38-kDa lipoprotein antigen of Mycobacterium tuberculosis is a phosphate-binding protein. J. Biol. Chem. 269: 1956–1958

    Google Scholar 

  • Cheng K-J, Ingram JM & Costerton JW (1970) Alkaline phosphatase localization and spheroplast formation of Pseudomonas aeruginosa. Can. J. Microbiol. 12: 1319–1324

    Google Scholar 

  • Cowan SW, Schirmer T, Rummel G, Steiert M, Ghosh R, Pauptit RA, Jansonius JN & Rosenbusch JP (1992) Crystal structures explain functional properties of two E. coli porins. Nature 358: 727–733

    Google Scholar 

  • Cox GB, Webb DC, Godovac-Zimmerman J & Rosenberg H (1988) Arg-220 of the PstA protein is required for phosphate transport through the phosphate-specific transport system in Escherichia coli but not for alkaline phosphatase repression. J. Bacteriol. 170: 2283–2286

    Google Scholar 

  • Cox GB, Webb DC & Rosenberg H (1989) Specific amino acid residues in both the PstB and PstC proteins are required for phosphate transport by the Escherichia coli Pst system. J. Bacteriol. 171: 1531–1534

    Google Scholar 

  • Dahl JL, Wei B-Y & Kadner RJ (1997) Protein phosphorylation affects binding of the Escherichia coli transcription activator UhpA to the uhpT promoter. J. Biol. Chem. 272: 1910–1919

    Google Scholar 

  • Das S, Lengweiler UD, Seebach D & Reusch RN (1997) Proof for a nonproteinaceous calcium-selective channel in Escherichia coli by total synthesis from (R)-3-hydroxybutanoic acid and inorganic polyphosphate. Proc. Natl. Acad. Sci. USA 94: 9075–9079

    Google Scholar 

  • Dassa E, Cahu M, Desjoyaux-Cherel B & Boquet PL (1982) The acid phosphatase with optimum pH of 2.5 of Escherichia coli: Physiological and biochemical study. J. Biol. Chem. 257: 6669–6676

    Google Scholar 

  • Davidson AL, Shuman HA & Nikaido H (1992) Mechanism of maltose transport in Escherichia coli: transmembrane signaling by periplasmic binding proteins. Proc. Natl. Acad. Sci. USA 89: 2360–2364

    Google Scholar 

  • Dietz GW & Heppel LA (1971) Studies on the uptake of hexose phosphates. II. The induction of the glucose-6-phosphate transport system by exogenous but not by endogenously formed glucose-6-phosphate. J. Biol. Chem. 246: 2885–2890

    Google Scholar 

  • Doige CA & Ames GF-L (1993) ATP-dependent transport systems in bacteria and humans: relevance to cystic fibrosis and multidrug resistance. Annu. Rev. Microbiol. 47: 291–319

    Google Scholar 

  • Dudler R, Schmidhauser C, Parish RW, Wettenhall REH & Schmidt T (1988) A mycoplasma high-affinity transport system and the in vitro invasiveness of mouse sarcoma cells. EMBO J. 7: 3963–397

    Google Scholar 

  • Eiglmeier K, Boos W & Cole ST (1987) Nucleotide sequence and transcriptional startpoint of the glpT gene of Escherichia coli: extensive sequence homology of the G-3-P transport protein with components of the H-6-P transport system. Mol. Microbiol. 1: 251–258

    Google Scholar 

  • Elvin CM, Hardy CM & Rosenberg H (1985) Pi exchange mediated by the GlpT-dependent sn-glycerol 3-phosphate transport system in Escherichia coli. J. Bacteriol. 161: 1054–1058

    Google Scholar 

  • Elvin CM, Dixon NE & Rosenberg H (1986) Molecular cloning of the phosphate (inorganic) transport (pit) gene of Escherichia coli K-12. Identification of the pit + gene product and physical mapping of the pit-gor region of the chromosome. Mol. Gen. Genet. 204: 477–484

    Google Scholar 

  • Elvin CM, Hardy CM & Rosenberg H (1987) Molecular studies on the phosphate inorganic transport system of Escherichia coli. In: Torriani-Gorini A, Rothman FG, Silver S, Wright A & Yagil E (Eds) Phosphate Metabolism and Cellular Regulation in Microorganisms, (pp 156–158). American Society for Microbiology, Washington, DC

    Google Scholar 

  • Endicott JE & Ling V (1989) The biochemistry of P-glycoprotein-mediated multidrug resistence. Annu. Rev. Biochem. 58: 137–171

    Google Scholar 

  • Ford SR, Hall MS, Vaden VR, Webster JJ & Leach FR (1994) Adenylate and guanylate energy charges in a subsurface Pseudomonas sp. Proc. Okla. Acad. Sci. 74: 31–36

    Google Scholar 

  • Friedberg I (1977a) Phosphate transport in Micrococcus lysodeikticus. Biochim. Biophys. Acta 466: 451–460

    Google Scholar 

  • Friedberg I (1977b) The effect of ionophores on phosphate and arsenate transport in Micrococcus lysodeikticus. FEBS Lett. 81: 264–266

    Google Scholar 

  • Friedberg I & Avigad G (1967) Some properties of alkaline phosphatase of Pseudomonas fluorescens. Eur. J. Biochem. 1: 193–198

    Google Scholar 

  • Friedrich MJ & Kadner RJ (1987) Nucleotide sequence of the uhp region of Escherichia coli. J. Bacteriol. 169: 3556–3563

    Google Scholar 

  • Gerdes RG & Rosenberg H (1974) The relationship between the phosphate-binding protein and a regulator gene product from Escherichia coli. Biochim. Biophys. Acta 351: 77–86

    Google Scholar 

  • Gerdes RG, Strickland KP & Rosenberg H (1977) Restoration of phosphate transport by the phosphate-binding protein in spheroplasts of Escherichia coli. J. Bacteriol. 131: 512–518

    Google Scholar 

  • Gilson E, Alloing G, Schmidt T, Claverys J-P, Dudler R & Hofnung M (1988) Evidence for high affinity binding protein-dependent transport systems in Gram-positive bacteria and in Mycoplasma. EMBO J. 7: 3971–3974

    Google Scholar 

  • van Groenestijn JW, Deinema MH & Zehnder AJB (1987) ATP production from polyphosphate in Acinetobacter strain 210A. Arch. Microbiol. 148: 14–19

    Google Scholar 

  • Günther T & Höllriegl V (1993) Na+-and anion-dependent Mg2+ influx in isolated hepatocytes. Biochim. Biophys. Acta 1149: 49–54

    Google Scholar 

  • Harold FM (1977) Membranes and energy transduction in bacteria. Curr. Top. Bioenerg. 6: 83–149

    Google Scholar 

  • Harold FM (1986) TheVital Force: a Study of Bioenergetics. Freeman WH & Company, New York

    Google Scholar 

  • Harold FM & Baarda JR (1966) Interaction of arsenate with phoshate transport systems in wild-type and mutant Streptococcus faecalis. J. Bacteriol. 91: 2257–2262

    Google Scholar 

  • Harold FM & Baarda JR (1968) Inhibition of membrane transport in Streptococcus faecalis by uncouplers of oxidative phosphorylation and its relationship to proton conduction. J. Bacteriol. 96: 2025–2034

    Google Scholar 

  • Harold FM & E Spitz (1975) Accumulation of arsenate, phosphate, and aspartate by Streptococcus faecalis. J. Bacteriol. 122: 266–277

    Google Scholar 

  • Harold FM, Harold RL & Abrams A (1965) A mutant of Streptococcus faecalis defective in phosphate transport. J. Biol. Chem. 240: 3145–3153

    Google Scholar 

  • Hayashi S-I, Koch JP & Lin ECC (1964) Active transport of L-α-glycerophosphate in Escherichia coli. J. Biol. Chem. 239: 3098–3105

    Google Scholar 

  • Hellingwerf KJ, Friedberg I, Lolkema JS, Michels PAM & Konings WN (1982) Energy coupling of facilitated transport of inorganic ions in Rhodopseudomonas sphaeroides. J. Bacteriol. 150: 1183–1191

    Google Scholar 

  • Henderson PJF (1991) Studies of translocation catalysis. Bioscience Reports 11: 477–538

    Google Scholar 

  • Hengge R & Boos W (1983) Maltose and lactose transport in Escherichia coli. Examples of two different types of concentrative transport system. Biochim. Biophys. Acta 737: 443–478

    Google Scholar 

  • Higgins CF (1992) ABC transporters: from microorganisms to man. Annu. Rev. Cell. Biol. 8: 67–113

    Google Scholar 

  • Higgins CF, Hyde SC, Mimmack Mm, Gileadi U, Gill DR & Gallagher MP (1990) Binding protein-dependent transport systems. J. Bioenerg. Biomembr. 22: 571–592

    Google Scholar 

  • Hulett FM (1996) The signal-transduction network for Pho regulation in Bacillus subtilis. Mol. Microbiol. 19: 933–939

    Google Scholar 

  • Hulett FM (1987) Alkaline phosphatase from Bacillus licheniformis: proteins and genes. In: Torriani-Gorini A, Rothman FG, Silver S, Wright A & Yagil E (Eds) Phosphate Metabolism and Cellular Regulation in Microorganisms, (pp. 43–48). American Society for Microbiology, Washington, DC

    Google Scholar 

  • Island MD & Kadner RJ (1993) Interplay between the membrane-associated UhpB and UhpC regulatory proteins. J. Bacteriol. 175: 5028–5034

    Google Scholar 

  • Island MD, Wei B-Y & Kadner RJ (1992) Structure and function of the uhp genes for the sugar phosphate transport system in Escherichia coli and Salmonella typhimurium. J. Bacteriol. 174: 2754–2762

    Google Scholar 

  • Kaback HR (1990) Active transport: membrane vesicles, bioenergetics, molecules and mechanisms. In: Krulwhich TA (Ed) The Bacteria, Vol. XII (pp 151–202). Academic Press, New York

    Google Scholar 

  • Kadner RJ, Murphy GP & Stephens GM (1992) Two mechanisms for growth inhibition by elevated transport of sugar phosphates in Escherichia coli. J. Gen. Microbiol. 138: 2007–2014

    Google Scholar 

  • Kasahara M, Makino K, Amemura M, Nakata A & Shinagawa H (1991) Dual regulation of the ugp operon by phosphate and carbon starvation at two interspaced promoters. J. Bacteriol. 173: 549–558

    Google Scholar 

  • Kay WW & Ghei OK (1981) Inorganic cation transport and the effects on C4 dicarboxylate transport in Bacillus subtilis. Can. J. Microbiol. 27: 1194–1201

    Google Scholar 

  • Kim S-K, Wilmes-Riesenberg MR & Wanner BL (1996) Involvement of the sensor kinase EnvZ in the in vivo activation of the response-regulator PhoB by acetyl phosphate. Mol. Microbiol. 22: 2534–2539

    Google Scholar 

  • Klionsky DJ, Herman PK & Emr SD (1990) The fungal vacuole: composition, function and biogenesis. Microbiol. Rev. 54: 266–292

    Google Scholar 

  • Konings WN & Rosenberg H (1978) Phosphate transport in membrane vesicles from Escherichia coli. Biochim. Biophys. Acta 508: 370–378

    Google Scholar 

  • Konings WN, Poolman B, van Veen HW (1994) Solute transport and energy transduction in bacteria. Antonie van Leeuwenhoek 65: 369–380

    Google Scholar 

  • Korteland J, Tommassen J & Lugtenberg B (1982) PhoE protein pore of the outer membrane of Escherichia coli K-12 is a particularly efficient channel for organic and inorganic phosphate. Biochim. Biophys. Acta 690: 282–289

    Google Scholar 

  • Korteland J, De Graaff P & Lugtenberg B (1984) PhoE protein pores in the outer membrane of Escherichia coli K-12 not only have a preference for Pi and Pi-containing solutes but are general anionpreferring channels. Biochim. Biophys. Acta 778: 311–316

    Google Scholar 

  • Kotyk A & Horák J (1981) Transport processes in the plasma membrane. In: Arnold WN (Ed) Yeast Cell Envelopes: Biochemistry, Biophysics and Ultrastructure, Vol 1 (pp 49–64). CRC Press, Boca Raton

    Google Scholar 

  • Kubena BD, Luecke H, Rosenberg H & Quiocho FA (1986) Crystallization and X-ray diffraction studies of a phosphate-binding protein involved in active transport in Escherichia coli. J. Biol. Chem. 261: 7995–7996

    Google Scholar 

  • Lacoste A-M, Cassaigne A & Neuzil E (1981) Transport of inorganic phosphate in Pseudomonas aeruginosa. Curr. Microbiol. 6: 115–120

    Google Scholar 

  • Larson TJ (1987) glpT-Dependent transport of sn-glycerol-3-phosphate in Escherichia coli K-12. In: Torriani-Gorini A, Rothman FG, Silver S, Wright A and Yagil E (Eds) Phosphate Metabolism and Cellular Regulation in Microorganisms, (pp 164–169). American Society for Microbiology, Washington, DC

    Google Scholar 

  • Larson TJ, Ehrmann M & Boos W (1983) Periplasmic glycerophospodiester phosphodiesterase of Escherichia coli, a new enzyme of the glp regulon. J. Biol. Chem. 258: 5428–5432

    Google Scholar 

  • Larson TJ (1987) glpT-Dependent transport of sn-glycerol-3-phosphate in Escherichia coli K-12. In: Torriani-Gorini A, Rothman FG, Silver S, Wright A & Yagil E (Eds) Phosphate Metabolism and Cellular Regulation in Microorganisms, (pp 164–169). American Society for Microbiology, Washington, DC

    Google Scholar 

  • Leblanc G, Rimon G & Kaback HR (1980) Glucose-6-phosphate transport in membrane vesicles isolated from Escherichia coli: Effect of imposed electrical potential and pH gradient. Biochemistry 19: 2522–2528

    Google Scholar 

  • Lee T-Y, Makino K, Shinagawa H, Amemura M & Nakata A (1989) Phosphate regulon in members of the family Enterobacteriaceae: comparison of the phoB-phoR operons of Escherichia coli, Shigella dysenteriae, and Klebsiella pneumoniae. J. Bacteriol. 171: 6593–6599

    Google Scholar 

  • Lefèvre P, Braibant M, de Wit L, Kalai M, Röeper D, Grötzinger J, Delville J-P, Peirs P, Ooms J, Huygen K & Content J (1997) Three different putative phosphate transport receptors are encoded by the Mycobacterium tuberculosis genome and are present at the surface of Mycobacterium bovis BCG. J. Bacteriol. 179: 2900–2906

    Google Scholar 

  • Lehninger AL (1970) Mitochondria and calcium transport. Biochem. J. 119: 129–138

    Google Scholar 

  • Lloyd AD & Kadner RJ (1990) Topology of the Escherichia coli UhpT sugar-phosphate transporter analyzed using TnphoA fusions. J. Bacteriol. 172: 1688–1693

    Google Scholar 

  • Luecke H & Quiocho FA (1990) High specificity of a phosphate transport protein determined by hydrogen bonds. Nature 347: 402–406

    Google Scholar 

  • Lugtenberg B & van Alphen L (1983) Molecular architecture and functioning of the outer membrane of Escherichia coli and other Gram-negative bacteria. Biochim. Biophys. Acta 737: 51–115

    Google Scholar 

  • Lynn AR & Rosen BP (1987) Calcium transport in prokaryotes. In: Rosen BP & Silver S (Eds) Ion Transport in Prokaryotes, (pp 181–201). Academic Press, New York

    Google Scholar 

  • Magota K, Otsuji N, Miki T, Horiuchi T, Tsunasawa S, Kondo J, Sakiyama F, Amemura M, Morita T, Shinagawa H & Nakata A (1984) Nucleotide sequence of the phoS gene, the structural gene for the phosphate-binding protein of Escherichia coli. J. Bacteriol. 157: 909–917

    Google Scholar 

  • Makino K, Shinagawa H, Amemura M & Nakata A (1986a) Nucleotide sequence of the phoR gene, a regulatory gene of the phosphate regulon of Escherichia coli. J. Mol. Biol. 192: 549–556

    Google Scholar 

  • Makino K, Shinagawa H, Amemura M & Nakata A (1986b) Nucleotide sequence of the phoB gene, the positive regulatory gene for the phosphate regulon of Escherichia coli. J. Mol. Biol. 190: 37–44

    Google Scholar 

  • Makino K, Shinagawa H, Amemura M, Kimura S, Nakata A & Ishihama A (1988) Regulation of the phosphate regulon of Escherichia coli. Activation of pstS transcription by phoB protein in vitro. J. Mol. Biol. 203: 85–95

    Google Scholar 

  • Makino K, Shinagawa H, Amemura M, Kawamoto T, Yamada M & Nakata A (1989) Signal transduction in the phosphate regulon of Escherichia coli involves phosphotransfer between PhoR and PhoB proteins. J. Mol. Biol. 210: 551–559

    Google Scholar 

  • Maloney PC, Ambudkar SV, Thomas J & Schiller L (1984) Phosphate:hexose-6-phosphate antiport in Streptococcus lactis. J. Bacteriol. 158: 238–245

    Google Scholar 

  • Maloney PC, Ambudkar SV & Sonna LA (1987) Anion exchange as the molecular basis of sugar phosphate transport by bacteria. In: Torriani-Gorini A, Rothman FG, Silver S, Wright A & Yagil E (Eds) Phosphate Metabolism and Cellular Regulation in Microorganisms, (pp 191–196). American Society for Microbiology, Washington, DC

    Google Scholar 

  • Maloney PC, Ambudkar SV, Anantharam V, Sonna LA & Varadhachary A (1990) Anion-exchange mechanisms in bacteria. Microbiol. Rev. 54: 1–17

    Google Scholar 

  • Marger M & Saier MH (1993) A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem. Sci. 18: 13–20

    Google Scholar 

  • Matos M, Fann M-C, Yan R-T & Maloney PC (1996) Enzymatic and biochemical probes of residues external to the translocation pathway of UhpT, the sugar phosphate carrier of Escherichia coli. J. Biol. Chem. 271: 18571–18575

    Google Scholar 

  • McCleary WR, Stock JB & Ninfa AJ (1993) Is acetyl phosphate a global signal in Escherichia coli? J. Bacteriol. 175: 2793–2798

    Google Scholar 

  • Medveczky N & Rosenberg H (1969) The binding and release of phosphate by a protein isolated from Escherichia coli. Biochim. Biophys. Acta 192: 369–371

    Google Scholar 

  • Medveczky N & Rosenberg H (1970) The phosphate-binding protein of Escherichia coli. Biochim. Biophys. Acta 211: 158–168

    Google Scholar 

  • Medveczky N & Rosenberg H (1971) Phosphate transport in Escherichia coli. Biochim. Biophys. Acta 241: 494–506

    Google Scholar 

  • Meisner H, Palmieri F & Quagliariello E (1972) Effect of cations and protons on the kinetics of substrate uptake in rat liver mitochondria. Biochemistry 11: 949–955

    Google Scholar 

  • Merkel TJ, Nelson DM, Brauer CL & Kadner RJ (1992) Promoter elements required for positive control of transcription of the Escherichia coli uhpT gene. J. Bacteriol. 174: 2763–2770

    Google Scholar 

  • Metcalf WW & Wanner BL (1991) Involvement of the Escherichia coli phn (psiD) gene cluster in assimilation of phosphorus in the form of phosphonates, phosphite, Pi esters, and Pi. J. Bacteriol. 173: 587–600

    Google Scholar 

  • Mitchell P (1954) Transport of phosphate across the osmotic barrier of Micrococcus pyogenes: specificity and kinetics. J. Gen. Microbiol. 11: 73–82

    Google Scholar 

  • Muda M, Rao NN & Torriani A (1992) Role of PhoU in phosphate transport and alkaline phosphatase regulation. J. Bacteriol. 174: 8057–8064

    Google Scholar 

  • Nakata A, Amemura M & Shinagawa H (1984) Regulation of the phosphate regulon in Escherichia coli K-12: regulation of the negative regulatory gene phoU and identification of the gene product. J. Bacteriol. 159: 979–985

    Google Scholar 

  • Neu HC & Heppel LA (1965) The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J. Biol. Chem. 240: 3685–3692

    Google Scholar 

  • Nieuwenhuis BJWM (1982) Phosphate and divalent cation uptake in yeast. Ph.D. thesis, University of Nijmegen, the Netherlands

    Google Scholar 

  • Nikaido H & Vaara M (1985) Molecular basis of bacterial outer membrane permeability. Microbiol. Rev. 49: 1–32

    Google Scholar 

  • Nikata T, Sakai Y, Shibata K, Kato K, Kuroda A & Ohtake H (1996) Molecular analysis of the phosphate-specific transport (pst) operon of Pseudomonas aeruginosa. Mol. Gen. Genet. 250: 692–698

    Google Scholar 

  • Olah GA, Trakhanov S, Trewhella J & Quiocho FA (1993) Leucine/isoleucine/valine-binding protein contracts upon binding of ligand. J. Biol. Chem. 268: 16241–16247

    Google Scholar 

  • Overbeeke N & Lugtenberg B (1980) Expression of outer membrane protein of Escherichia coli K-12 by phosphate limitation. FEBS Lett. 112: 229–232

    Google Scholar 

  • Overduin P, Boos W & Tommassen J (1988) Nucleotide sequence of the ugp genes of Escherichia coli K-12: homology to the maltose system. Mol. Microbiol. 2: 767–775

    Google Scholar 

  • Perego M, Higgins CF, Pearce SR, Gallagher MP & Hoch JA (1991) The oligopeptide transport system of Bacillus subtilis plays a role in the initiation of sporulation. Mol. Microbiol. 5: 173–185

    Google Scholar 

  • Pogell BM, Maity BR, Frumkin S & Shapiro S (1966) Induction of an active transport system of glucose-6-phosphate in Escherichia coli. Arch. Biochem. Biophys. 116: 406–415

    Google Scholar 

  • Poole K & Hancock REW (1984) Phosphate transport in Pseudomonas aeruginosa. Involvement of a periplasmic phosphate-binding protein. Eur. J. Biochem. 144: 607–612

    Google Scholar 

  • Poole K & Hancock REW (1986) Phosphate-starvation-induced outer membrane proteins of members of the families Enterobacteriaceae and Pseudomonodaceae: demonstration of immunological cross-reactivity with an antiserum specific for porin protein P of Pseudomonas aeruginosa. J. Bacteriol. 165: 987–993

    Google Scholar 

  • Poolman B, Nijssen RMJ & Konings WN (1987) Dependence of Streptococcus lactis phosphate transport on internal phosphate concentration and internal pH. J. Bacteriol. 169: 5373–5378

    Google Scholar 

  • Pressman BC (1970) Energy-linked transport in mitochondria. In: Racker E (Ed) Membranes of Mitochondria and Chloroplasts, (pp 213–250). Van Nostrand-Reinhold, New York

    Google Scholar 

  • Prossnitz E, Gee A & Ames GF-L (1989) Reconstitution of the histidine periplasmic transport system in membrane vesicles. Energy coupling and interaction between the binding protein and the membrane complex. J. Biol. Chem. 264: 5006–5014

    Google Scholar 

  • Qi Y, Kobayashi Y & Hulett FM (1997) The pst operon of Bacillus subtilis has a phosphate-regulated promoter and is involved in phosphate transport but not in regulation of the Pho regulon. J. Bacteriol. 179: 2534–2539

    Google Scholar 

  • Rae AS & Strickland KP (1976a) Studies on phosphate transport in Escherichia coli. I. Reexamination of the effect of osmotic and cold shock on phosphate uptake and some attempts to restore uptake with phosphate binding protein. Biochim. Biophys. Acta 433: 555–563

    Google Scholar 

  • Rae AS & Strickland KP (1976b) Studies on phosphate transport in Escherichia coli. II. Effects of metabolic inhibitors and divalent cations. Biochim. Biophys. Acta 433: 564–582

    Google Scholar 

  • Rao NN & Kornberg A (1996) Inorganic polyphosphate supports resistance and survival of stationary-phase Escherichia coli. J. Bacteriol. 178: 1394–1400

    Google Scholar 

  • Rao NN, Roberts MF, Torriani A & Yashphe Y (1993) Effect of glpT and glpD mutations on expression of the phoA gene in Escherichia coli. J. Bacteriol. 175: 74–79

    Google Scholar 

  • Reizer J & Saier MH (1987) Mechanism and regulation of phosphate transport in Streptococcus pyogenes. J. Bacteriol. 169: 297–302

    Google Scholar 

  • Rensink JH, Eggers E & Donkers HJGW (1991) High biological nutrient removal from domestic waste water in combination with phosphorus recycling. Water Sci. Technol. 23: 651–657

    Google Scholar 

  • Reusch RN, Huang R & Bramble LL (1995) Poly-3-hydroxybutyrate/polyphosphate complexes form voltage-activated Ca2+ channels in the plasma membranes of Escherichia coli. Biophys. J. 69: 754–766

    Google Scholar 

  • Riordan JR, Rommens JM, Kerem B-S, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou J-L, Drumm ML, Iannuzzi MC, Collins FS & Tsui L-C (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245: 1066–1073

    Google Scholar 

  • Rosenberg H (1987) Phosphate transport in prokaryotes. In: Rosen BP & Silver S (Eds) Ion Transport in Prokaryotes, (pp 205–248). Academic Press, New York

    Google Scholar 

  • Rosenberg H & La Nauze JM (1968) The isolation of a mutant of Bacillus cereus deficient in phosphate uptake. Biochim. Biophys. Acta 156: 381–388

    Google Scholar 

  • Rosenberg H, Medveczky N & La Nauze JM (1969) Phosphate transport in Bacillus cereus. Biochim. Biophys. Acta 193: 159–167

    Google Scholar 

  • Rosenberg H, Gerdes RG & Chegwidden K (1977) Two systems for the uptake of phosphate in Escherichia coli. J. Bacteriol. 131: 505–511

    Google Scholar 

  • Rosenberg H, Gerdes RG & Harold FM (1979) Energy coupling to the transport of inorganic phosphate in Escherichia coli K-12. Biochem. J. 178: 133–137

    Google Scholar 

  • Rosenberg H, Hardy CM & Surin BP (1984) Energy coupling to phosphate transport in Escherichia coli. In: Leive L & Schlessinger D (Eds) Microbiology, (pp 50–52). American Society for Microbiology, Washington, DC

    Google Scholar 

  • Russell LM & Rosenberg H (1979) Linked transport of phosphate, potassium ions and protons in Escherichia coli. Biochem. J. 184: 13–21

    Google Scholar 

  • Russell LM & Rosenberg H (1980) The nature of the link between potassium transport and phosphate transport in Escherichia coli. Biochem. J. 188: 715–723

    Google Scholar 

  • Silver S & Walderhaug M (1992) Gene regulation of plasmid-and chromosome-determined inorganic ion transport in bacteria. Microbiol. Rev. 56: 195–228

    Google Scholar 

  • Silver S, Budd K, Leahy KM, Shaw WV, Hammond D, Novick RP, Willsky GR, Malamy MH & Rosenberg H (1981) Inducible plasmid-determined resistance to arsenate, arsenite and antimony (III) in Escherichia coli and Staphylococcus aureus. J. Bacteriol. 146: 983–996

    Google Scholar 

  • Smith RL & Maguire ME (1995) Distribution of the CorA Mg2+ transport system in Gram-negative bacteria. J. Bacteriol. 177: 1638–1640

    Google Scholar 

  • Smith RL, Banks JL, Snavely MD & Maguire ME (1993) Sequence and topology of the CorA magnesium transport systems of Salmonella typhimurium and Escherichia coli: identification of a new class of transport protein. J. Biol. Chem. 268: 14071–14080.

    Google Scholar 

  • Smith RL, Thompson LJ & Maguire ME (1995) Cloning and characterization of MgtE, a putative new class of Mg2+ transporter from Bacillus firmus OF4. J. Bacteriol. 177: 1233–1238.

    Google Scholar 

  • Sonna LA & Maloney PC (1988) Identification and functional reconstitution of phosphate:sugar-phosphate antiport in Staphylococcus aureus. J. Membr. Biol. 101: 267–274

    Google Scholar 

  • Sonna LA, Ambudkar SV & Maloney PC (1988) The mechanism of glucose 6-phosphate transport by Escherichia coli. J. Biol. Chem. 263: 6625–6630

    Google Scholar 

  • Steed PM & Wanner BL (1993) Use of the rep technique for allele replacement to construct mutants with deletions of the pstSCAB-phoU operon: evidence of a new role for the PhoU protein in the phosphate regulon. J. Bacteriol. 175: 6797–6809

    Google Scholar 

  • Sterkenburg A, Vlegels E & Wouters JTM (1984) Influence of nutrient limitation and growth rate on the outer membrane proteins of Klebsiella aerogenes NCTC 418. J. Gen. Microbiol. 130: 2347–2355

    Google Scholar 

  • Stock JB, Ninfa AJ & Stock AM (1989) Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol. Rev. 53: 450–490

    Google Scholar 

  • Surin BP, Jans DA, Fimmel AL, Shaw DC, Cox GB & Rosenberg H (1984) Structural gene for the phosphate-repressible phosphate-binding protein of Escherichia coli has its own promoter: complete nucleotide sequence of the phoS gene. J. Bacteriol. 157: 772–778

    Google Scholar 

  • Surin BP, Rosenberg H & Cox GB (1985) Phosphate-specific transport system of Escherichia coli: nucleotide sequence and gene-polypeptide relationships. J. Bacteriol. 161: 189–198

    Google Scholar 

  • Surin BP, Cox GB & Rosenberg H (1987) Molecular studies on the phosphate-specific transport system of Escherichia coli. In: Torriani-Gorini A, Rothman FG, Silver S, Wright A & Yagil E (Eds) Phosphate Metabolism and Cellular Regulation in Microorganisms, (pp 145–149). American Society for Microbiology, Washington, DC

    Google Scholar 

  • Takemaru KI, Mizuno M & Kobayashi Y (1996) A Bacillus subtilis gene cluster similar to the Escherichia coli phosphate-specific transport (pst) operon. Microbiol. 142: 2017–2020

    Google Scholar 

  • Tan ASP & Worobec EA (1993) Isolation and characterization of two immunochemically distinct alkaline phosphatases from Pseudomonas aeruginosa. FEMS Microbiol. Lett. 106: 281–286

    Google Scholar 

  • Tisa LS, Olivera BM & Adler J (1993) Inhibition of Escherichia coli chemotaxis by ω-conotoxin, a calcium ion channel blocker. J. Bacteriol. 175: 1235–1238.

    Google Scholar 

  • Torriani-Gorini A (1987) The birth and growth of the Pho regulon. In: Torriani-Gorini A, Rothman FG, Silver S, Wright A & Yagil E (Eds) Phosphate Metabolism and Cellular Regulation in Microorganisms, (pp 3–11). American Society for Microbiology, Washington, DC

    Google Scholar 

  • Townsend DE, Esenwine AJ, George III J, Bross D, Maguire ME & Smith RL (1995) Cloning of the MgtE Mg2+ transporter from Providencia stuartii and the distribution of MgtE in Gram-negative and Gram-positive bacteria. J. Bacteriol. 177: 5350–5354

    Google Scholar 

  • van Veen HW (1994) Energetics and Mechanisms of Phosphate Transport in Acinetobacter johnsonii. Ph.D. thesis, Agricultural University Wageningen, The Netherlands

    Google Scholar 

  • van Veen HW, Abee T, Kortstee GJJ, Konings WN & Zehnder AJB (1993a) Characterization of two phosphate transport systems in Acinetobacter johnsonii 210A. J. Bacteriol. 175: 200–206

    Google Scholar 

  • van Veen HW, Abee T, Kortstee GJJ, Konings WN & Zehnder AJB (1993b) Mechanism and energetics of the secondary phosphate transport system of Acinetobacter johnsonii 210A. J. Biol. Chem. 268: 19377–19383

    Google Scholar 

  • van Veen HW, Abee T, Kortstee GJJ, Konings WN & Zehnder AJB (1994a) Substrate specificity of the two phosphate transport systems of Acinetobacter johnsonii 210A in relation to phosphate speciation in its aquatic environment. J. Biol. Chem. 269: 16212–16216

    Google Scholar 

  • van Veen HW, Abee T, Kortstee GJJ, Konings WN & Zehnder AJB (1994b) Translocation of metal phosphate via the phosphate inorganic transport (Pit) system of Escherichia coli. Biochemistry 33: 1766–1770

    Google Scholar 

  • van Veen HW, Abee T, Kortstee GJJ, Konings WN, & Zehnder AJB (1994c) Phosphate inorganic transport (Pit) system in Escherichia coli and Acinetobacter johnsonii. In: Torriani-Gorini A, Yagil Y & Silver S (Eds) Phosphate in Microorganisms: Cellular and Molecular Biology, (pp 43–49). American Society for Microbiology, Washington, DC

    Google Scholar 

  • van Veen HW, Abee T, Kortstee GJJ, Pereira H, Konings WN & Zehnder AJB (1994d) Generation of a proton motive force by the excretion of metal phosphate in the polyphosphate-accumulating Acinetobacter johnsonii strain 210A. J. Biol. Chem. 269: 29509–29514

    Google Scholar 

  • van Veen HW, Abee T, Kleefsman AWF, Melgers B, Kortstee GJJ, Konings WN & Zehnder AJB (1994e) Energetics of alanine, lysine and proline transport in cytoplasmic membranes of the polyphosphate-accumulating Acinetobacter johnsonii 210A. J. Bacteriol. 176: 2670–2776

    Google Scholar 

  • van Veen HW, Venema K, Bolhuis H, Oussenko I, Kok J, Poolman B, Driessen A.J.M. & Konings WN (1996) Multidrug resistance mediated by a bacterial homolog of the human multidrug transporter MDR1. Proc. Natl. Acad. Sci. USA 93: 10668–10672

    Google Scholar 

  • van Veen HW, Callaghan R, Soceneantu L, Sardini A, Konings WN, Higgins CF (1997) Functional complementation of the human multidrug resistance MDR1 gene by the bacterial antibiotic resistance lmrA gene. Nature in press

  • Verhoef C, van Koppen C, Overduin P, Lugtenberg B, Korteland J & Tommassen J (1984) Cloning and expression in Escherichia coli K-12 of the structural gene for outer membrane PhoE protein from Enterobacter cloacae. Gene 32: 107–115

    Google Scholar 

  • Wang Z, Choudhary A, Ledvina PS & Quiocho FA (1994) Fine tuning the specificity of the periplasmic phosphate receptor. J. Biol. Chem. 269: 25091–25094

    Google Scholar 

  • Wanner BL (1993) Gene regulation by phosphate in enteric bacteria. J. Cell. Biochem. 51: 47–54

    Google Scholar 

  • Wanner BL & Wilmes-Riesenberg MR (1992) Involvement of phosphotransacetylase, acetate kinase, and acetyl phosphate synthesis in control of the phosphate regulon in Escherichia coli. J. Bacteriol. 174: 2124–2130

    Google Scholar 

  • Webb DC, Rosenberg H & Cox GB (1992) Mutational analysis of the Escherichia coli phosphate-specific transport system, a member of the traffic ATPase (or ABC) family of membrane transporters. J. Biol. Chem. 267: 24661–24668

    Google Scholar 

  • Weppelman R, Kier LD & Ames BN (1977) Properties of two phosphatases and a cyclic phosphodiesterase of Salmonella typhimurium. J. Bacteriol. 130: 411–419

    Google Scholar 

  • Weston LA & Kadner RJ (1987) Identification of Uhp polypeptides and evidence for their role in exogenous induction of the sugar phosphate transport system of Escherichia coli. J. Bacteriol. 169: 3546–3555

    Google Scholar 

  • Weston LA & Kadner RJ (1988) Role of uhp genes in expression of the Escherichia coli sugar-phosphate transport system. J. Bacteriol. 170: 3375–3383

    Google Scholar 

  • Willecke K, Grier E-M & Oehr P (1973) Coupled transport of citrate and magnesium in Bacillus subtilis. J. Bacteriol. 144: 366–374

    Google Scholar 

  • Willsky GR & Malamy MH (1974) The loss of the phoS periplasmic protein leads to a change in the specificity of a constitutive inorganic phosphate transport system in Escherichia coli. Biochem. Biophys. Res. Commun. 60: 226–233

    Google Scholar 

  • Willsky GR & Malamy MH (1980a) Characterization of two genetically separable inorganic phosphate transport systems in Escherichia coli. J. Bacteriol. 144: 356–365

    Google Scholar 

  • Willsky GR & Malamy MH (1980b) Effect of arsenate on inorganic phosphate transport in Escherichia coli. J. Bacteriol. 144: 366–374

    Google Scholar 

  • Willsky GR, Bennett RL & Malamy MH (1973) Inorganic phosphate transport in Escherichia coli: involvement of two genes which play a role in alkaline phosphatase regulation. J. Bacteriol. 113: 529–539

    Google Scholar 

  • Winkler HH (1966) A hexose-phosphate transport system in Escherichia coli. Biochim. Biophys. Acta 117: 231–240

    Google Scholar 

  • Wohlrab H (1986) Molecular aspects of inorganic phosphate transport in mitochondria. Biochim. Biophys. Acta 853: 115–134

    Google Scholar 

  • Yamada M, Makino K, Shinagawa H & Nakata A (1990) Regulation of the phosphate regulon of Escherichia coli: properties of phoR deletion mutants and subcellular localization of PhoR protein. Mol. Gen. Genet. 220: 366–372

    Google Scholar 

  • Yan R-T & Maloney PC (1993) Identification of a residue in the translocation pathway of a membrane carrier. Cell 75: 37–44

    Google Scholar 

  • Yashphe J, Chikarmane H, Iranzo M & Halvorson HO (1990) Phosphatases of Acinetobacter lwoffi. Localization and regulation of synthesis by orthophosphate. Curr. Microbiol. 20: 273–280

    Google Scholar 

  • Yashphe J, Chikarmane H, Iranzo M & Halvorson HO (1992) Inorganic phosphate transport in Acinetobacter lwoffi. Curr. Microbiol. 24: 275–280

    Google Scholar 

  • van der Zee JR, Postma PW & Hellingwerf KJ (1995) Non-physiological expression of UhpT does not lead to uncontrolled leakage of sugare phosphates out of Escherichia coli cells. FEMS Microbiol. Lett. 131: 21–26

    Google Scholar 

  • Zoratti M & Lanyi JK (1987) Phosphate transport in Halobacterium halobium depends on cellular ATP levels. J. Bacteriol. 169: 5755–5760

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Veen, H.W. Phosphate transport in prokaryotes: molecules, mediators and mechanisms. Antonie Van Leeuwenhoek 72, 299–315 (1997). https://doi.org/10.1023/A:1000530927928

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1000530927928

Navigation