Skip to main content
Log in

Wind Stress Structure in the Unstable Marine Surface Layer Detected by Sar

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The wind stress in the marine surface layer under unstable conditions and low wind speed has been studied using a Synthetic Aperture Radar (SAR) image of the sea surface and time series of the horizontal and vertical wind velocities and of the wind stress recorded on board the C.N.R. research platform, in the northern Adriatic Sea, during a SAR overflight.

A conditional sampling technique has been used on the wind stress time series and on the SAR image to detect downward (sweep) and upward (ejection) bursts of the momentum flux, as well as the two-dimensional structure of the radar backscatter.

From the ensemble average of both the wind stress and the backscatter structures, it has been possible to estimate the mean duration of the upward (≈11 s) and the downward (≈15 s) wind stress bursts and the mean size of the bright patches of the SAR image (≈120 m). The front of the mean backscatter structure, associated with the downward wind stress bursts, has been related to the time length of the mean sweep stress structure to get, after accounting for a threshold of the wind stress for the generation of the sea surface wavelets, the translation velocity Ut of the mean wind stress of sweep, very close to the mean wind speed. The vertical coherence of the wind stress structures has permited to refer the translation velocity to a level very close to the sea surface, but above the viscous sublayer. The variability of Ut with height has been studied through comparison with the mean wind speed at different heights z calculated by a boundary-layer model. Accounting for the results reported in the literature, there is an indication that Ut is constant with height in the range 0.5 m ≤ z ≤ 15 m.

The two-dimensional pattern of the wind stress structures has been derived from the SAR image. The structures appear elongated crosswind, as with microfronts, with an average cross- to down-wind ratio of ≈ 4. The area covered by the downward wind stress structures represents 13% of the total area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agee, E. M., Chen, T. S., and Dowell, K. E.: 1973, 'A Review of Mesoscale Cellular Convection', Bull. Amer. Meteorol. Soc. 54, 1004-1012.

    Google Scholar 

  • Agee, E. M.: 1982, 'An Introduction to Shallow Convective Systems', in E. M. Agee and T. Asai (eds.), Cloud Dynamics, D. Reidel Pub. Co., Dordrecht, pp. 3-30.

    Google Scholar 

  • Antonia, R. A. and Chambers, A. J.: 1978, 'Note on the Temperature Ramp Structures in the Marine Surface Layer', BoundaryLayer Meteorol. 15, 347-355.

    Google Scholar 

  • Antonia, R. A., Chambers, A. J., Friehe, C. A., and Van Atta, C. W.: 1979, 'Temperature Ramps in the Atmospheric Surface Layer', J. Atmos. Sci. 36, 99-108.

    Google Scholar 

  • Antonia, R. A., Rajagopalan, S., and Chambers, A. J.: 1983, 'Conditional Sampling of Turbulence in the Atmospheric Surface Layer', J. Clim. Appl. Meteorol. 22, 69-78.

    Google Scholar 

  • Ataktürk, S. S. and Katsaros, K. B.: 1989, 'The KGill, a Twin PropellerVane Anemometer for Measurements of Atmospheric Turbulence', J. Atmos. Ocean. Tech. 6, 509-515.

    Google Scholar 

  • Blackwelder, R. F. and Kaplan, R. E.: 1976, 'On theWall Structure of the Turbulent Boundary Layer', J. Fluid Mech. 76, 89-112.

    Google Scholar 

  • Bortoletto, M. and Zecchetto, S.: 1993, 'La misura, il calcolo e le caratteristiche dello stress del vento in un caso di Bora nel nord Adriatico', ISDGM Technical Report 173, 31 pp.

  • Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, 'FluxProfile Relationship in the Atmospheric Surface Layer', J. Atmos. Sci. 28, 181-189.

    Google Scholar 

  • Caughly, S. J. and Palmer, S. G.: 1979, 'Some Aspects of Turbulence Structure Through the Depth of the Convective Boundary Layer', Quart. J. Roy. Meteorol. Soc. 105, 811-827.

    Google Scholar 

  • Chen, C. H. P. and Blackwelder, R. F.: 1978, 'Large Scale Motion in the Turbulent Boundary Layer: A Study Using Temperature Contamination', J. Fluid Mech. 89, 1-31.

    Google Scholar 

  • Coulman, C. E.: 1978, 'BoundaryLayer Evolution and Nocturnal Inversion Dispersal, Part II', BoundaryLayer Meteorol. 14, 493-513.

    Google Scholar 

  • Davison, D.: 1974, 'The Translation Velocity of the Convective Plumes', Quart. J. Roy. Meteorol. Soc. 100, 572-592.

    Google Scholar 

  • Donelan, M. A. and Pierson, W. J.: 1987, 'Radar Scattering and Equilibrium Ranges in Wind-Generated Waves with Application to Scatterometry', J. Geophys. Res. 92, 4971-5029.

    Google Scholar 

  • Fiscella, B., Gomez, F., Pavese, P., Trivero, P., Curiotto, S., Umgiesser, G., and Zecchetto, S.: 1991a, 'The 'Venice' SAR580 Experiment', Istituto di Cosmogeofisica Technical Report ICG 242/91, 24 pp.

  • Fiscella, B., Lombardini, P. P., Trivero, P., Pavese, P., and Cappa, C.: 1991b, 'Western Mediterranean Wind Field Deduced from SIRA SAR Images', Il Nuovo Cimento 14, 127-133.

    Google Scholar 

  • Frisch, A. S. and Businger, J. A.: 1973, 'A Study on the Convective Elements in the Atmospheric Surface Layer', BoundaryLayer Meteorol. 3, 301-328.

    Google Scholar 

  • Gerling, T. W.: 1986, 'Structure of the Surface Wind Field from the Seasat SAR', J. Geophys. Res. 91, 2308-2320.

    Google Scholar 

  • Greenhut, G. K. and Khalsa, S. J. S.: 1982, 'Updraft and Downdraft Events in the Atmospheric Boundary Layer Over the Equatorial Pacific Ocean', J. Atmos. Sci. 39, 1803-1818.

    Google Scholar 

  • Haugen, D. A., Kaimal, J. C., and Bradley, E. F.: 1971, 'An Experimental Study of Reynolds Stress and Heat Flux in the Atmospheric Surface Layer', Quart. J. Roy. Meteorol. Soc. 97, 168-180.

    Google Scholar 

  • Johansson, A. V. and Alfredsson, P. H.: 1982, 'On the Structure of Turbulent Channel Flow', J. Fluid Mech. 122, 295-314.

    Google Scholar 

  • Keller, W. C., Plant, W. J., and Weissman, D. E.: 1985, 'The Dependence of X Band Microwave Sea Return on Atmospheric Stability State', J. Geophys. Res. 90, 1019-1029.

    Google Scholar 

  • Khalsa, S. J. S.: 1980, 'SurfaceLayer Intermittency Investigated with Conditional Sampling', BoundaryLayer Meteorol. 19, 135-153.

    Google Scholar 

  • Khalsa, S. J. S. and Greenhut, G. K.: 1985, 'Conditional Sampling of Updrafts and Downdrafts in the Marine Atmospheric Boundary Layer', J. Atmos. Sci. 42, 2550-2562.

    Google Scholar 

  • Kaimal, J. C. and Businger, J. A.: 1970, 'Case Studies of a Convective Plume and Dust Devil', J. Appl. Meteorol. 9, 612-620.

    Google Scholar 

  • Kaimal, J. C., Wyngaard, J. C., Izumi, Y., and Coté, O. R.: 1972, 'Spectral Characteristics of the Surface-layer Turbulence', Quart. J. Roy. Meteorol. Soc. 98, 563-589.

    Google Scholar 

  • Kaimal, J. C.: 1974, 'Translation Speed of Convective Plumes in the Atmospheric Surface Layer', Quart. J. Roy. Meteorol. Soc. 100, 46-52.

    Google Scholar 

  • Kondo, J.: 1975, 'Air-Sea Bulk Transfer Coefficients in Diabatic Conditions', Boundary-Layer Meteorol. 9, 91-112.

    Google Scholar 

  • Lenschow, D. H. and Stephens, P. L.: 1980, 'The Role of the Thermals in the Convective Boundary Layer', Boundary-Layer Meteorol. 19, 509-532.

    Google Scholar 

  • Lenschow, D. H. and Stephens, P. L.: 1982, 'Mean Vertical Velocities and Turbulence Intensity Inside and Outside Thermals', Atmos. Environ. 16, 509-532.

    Google Scholar 

  • Livingstone, C. E., Gray, A. L., Howkings, R. K., Olsen, R. B., Halbertsma, J. G., and Deane, R. A.: 1987, 'CCRS C-Band Airborne Radar: System Description and Test Results', Proc. of the 11th Canadian Symposium on Remote Sensing, University of Waterloo, June 22-25, 1987.

  • Mahrt, L.: 1991, 'Eddy Asymmetry in the Sheared Heated Boundary Layer', J. Atmos. Sci. 48, 472-492.

    Google Scholar 

  • Manton, M. J.: 1977, 'On the Structure of Convection', Boundary-Layer Meteorol. 12, 491-503.

    Google Scholar 

  • McBean, G. A.: 1974, 'Turbulent Transfer Mechanism', Quart. J. Roy. Meteorol. Soc. 100, 53-66.

    Google Scholar 

  • Mizuno, T. and Panofsky, H. A.: 1975, 'The Validity of the Taylor's Hypothesis in the Atmospheric Surface Layer', BoundaryLayer Meteorol. 9, 375-380.

    Google Scholar 

  • Monij, N.: 1973, 'Budget of Turbulent Energy and Temperature Variance in the Transition Zone from Forced to Free Convection', J. Meteorol. Soc. Japan 51, 133-155.

    Google Scholar 

  • Monin, A. S.: 1967, 'Turbulence in the Atmospheric Boundary Layer', The Physics of Fluids Supplement, S31-S37.

  • Panofsky, H. A., Tennekes, H., Lenschow, D. H., and Wyngaard, J. C.: 1977, 'The Characteristics of Turbulent Velocity Components in the Surface Layer under Convective Conditions', BoundaryLayer Meteorol. 11, 355-361.

    Google Scholar 

  • Panofsky, H. A. and Dutton, J. A.: 1984, Atmospheric Turbulence, Wiley Interscience, New York, 397 pp.

    Google Scholar 

  • Phong-Anant, D., Antonia, R. A., Chambers, A. J., and Rajagopalan, S.: 1980, 'Features of the Organized Motion in the Atmospheric Surface Layer', J. Geophys. Res. 85, 424-432.

    Google Scholar 

  • Pierson, W. J. and Stacy, R. A.: 1973, 'The Elevation, Slope and Curvature Spectra of the Wind Roughened Sea Surface', Final Report, New York Univ, NASA CB2247, 129 pp.

  • Plant, W. J and Keller, W. C.: 1990, 'Evidence of Bragg Scattering in Microwave Doppler Spectra of Sea Return', J. Geophys. Res. 95, 16299-16310.

    Google Scholar 

  • Priestley, C. H. B.: 1959, Turbulent Transfer in the Lower Atmosphere, The University of Chicago Press, Chicago, pp. 53-72.

    Google Scholar 

  • Schols, J. L. J.: 1984, 'The Detection and Measurement of Turbulent Structures in the Atmospheric Surface Layer', Boundary-Layer Meteorol. 29, 39-58.

    Google Scholar 

  • Schols, J. L. J., Jansen, A. E., and Krom, J. G.: 1985, 'Characteristics of Turbulent Structures in the Unstable Atmospheric Surface Layer', Boundary-Layer Meteorol. 33, 173-196.

    Google Scholar 

  • Stull, R. B.: 1988, An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht, 666 pp.

    Google Scholar 

  • Subramanian, C. S., Rajagopalan, S., Antonia, R. A., and Chambers, A. J.: 1982, 'Comparison of Conditional Sampling and Averaging Techniques in the Turbulent Boundary Layer', J. Fluid Mech. 123, 335-362.

    Google Scholar 

  • Taylor, G. I.: 1938, 'The Spectrum of Turbulence', Proc. Roy. Soc. A164, 476-490.

    Google Scholar 

  • Trevett, J. W. (ed.): 1984, Proceedings of the SAR580 Investigators Workshop, Joint Research Center, Ispra Establishment, Italy.

  • Ulaby, F. T., Moore, R. K., and Fung, A. K.: 1981, Microwave Remote Sensing: Active and Passive, Vol. 1, Fundamentals and Radiometry, Addison-Wesley Pub. Co., London/Amsterdam/Tokyo, pp. 306-314.

    Google Scholar 

  • Ulaby, F. T., Moore, R. K., and Fung, A. K.: 1981, Microwave Remote Sensing: Active and Passive, Vol. 2, Radar Remote Sensing and Surface Scattering and Emission Theory, Addison-Wesley Pub. Co., London/Amsterdam/Tokyo, pp. 483-485.

    Google Scholar 

  • Valenzuela, G. R.: 1978, 'Theories for the Interaction of Electromagnetic and Oceanic Waves - A Review', Boundary-Layer Meteorol. 13, 61-85.

    Google Scholar 

  • Wilczak, J. M. and Tillman, J. E.: 1980, 'The Three-Dimensional Structure of Convection in the Atmospheric Surface Layer', J. Atmos. Sci. 37, 2424-2443.

    Google Scholar 

  • Wilczak, J. M.: 1984, 'Large-Scale Eddies in the Unstably Stratified Atmospheric Surface Layer. Part I: Velocity and Temperature Structure', J. Atmos. Sci. 41, 3551-3567.

    Google Scholar 

  • Williams, A. G. and Hacker, J. M.: 1992, 'The Composite Shape and Structure of Coherent Eddies in the Convective Boundary Layer', Boundary-Layer Meteorol. 61, 213-245.

    Google Scholar 

  • Young, G. S.: 1988, 'Turbulence Structure of the Convective Boundary Layer. Part II: Phoenix 78 Aircraft Observations of Thermals and Their Environment', J. Atmos. Sci. 45, 727-735.

    Google Scholar 

  • Zecchetto, S. and Trivero, P.: 1993, 'Experimental Ocean Active Microwave Remote Sensing', in I. S. F. Jones, Y. Sugimory and R. W. Stewart (eds.), Satellite Remore Sensing of the Oceanic Environment, Seibutsu Kankyusha Co. Ltd., pp. 115-122.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zecchetto, S., Trivero, P., Fiscella, B. et al. Wind Stress Structure in the Unstable Marine Surface Layer Detected by Sar. Boundary-Layer Meteorology 86, 1–28 (1998). https://doi.org/10.1023/A:1000522423136

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1000522423136

Navigation