Skip to main content
Log in

The Evolution Of Turbulence Across A Forest Edge

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

An experiment was set-up to investigate the adjustment of turbulence over a roughness transition (moorland to forest). Results from this experiment support the development of an internal boundary layer (IBL) at the transition, which propagates upwards by turbulent diffusion as a function of distance downwind from the transition. Spectra and length-scale results uphold the hypothesis that, over a transition to a rough surface, the variance distribution shifts towards smaller wavelengths/length scales. However, results suggest that the adjustment of streamwise velocity variance may be faster than the adjustment of the vertical velocity variance. The concept of an equilibrium layer developing above the new surface is supported. Fetch requirements for equilibrium are, however, found to differ between first order and second order (flux) statistics, with second order statistics requiring a longer fetch. Results indicate that fetch should exceed 25 times the height of the measurement above the zero plane, which is a 2° (±0.5) growth angle, for flux equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonia, R. A. and Luxton, R. E.: 1971, ‘The Response of a Turbulent Boundary Layer to a Step Change in Surface Roughness. Part 1: Smooth to Rough’, J. Fluid Mech. 48(4), 721–761.

    Google Scholar 

  • Anderson, P. S., Mobbs, S. D., King, J. C., McConnel, I., and Rees, J. M.: 1992, ‘A Microbaragraph for Internal Gravity Wave Studies in Antartica’, Antartic Sci. 4, 241.

  • Baldocchi, D. D. and Hutchison, B. A.: 1987, ‘Turbulence in an Almond Orchard: Vertical Variation in Turbulent Statistics’, Boundary-Layer Meteorol. 40, 137–146.

    Google Scholar 

  • Baldocchi, D. D and Meyers T. P.: 1988, ‘Turbulence Structure in a Deciduous Forest Canopy’, Boundary-Layer Meteorol. 43, 345–365.

    Google Scholar 

  • Bradley, E. F.: 1968, ‘A Micrometeorogical Study of Velocity Profiles and Surface Drag in the Region Modified by a Change in Surface Roughness’, Quart. J. Roy. Meteorol. Soc. 116, 361–379.

    Google Scholar 

  • Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, ‘Flux-Profile Relationships in the Atmospheric Surface Layer’, J. Appl. Meteorol. 28, 181–189.

    Google Scholar 

  • Dyer, A. J.: 1974, ‘A Review of Flux-Profile Relationships’, Boundary-Layer Meteorol. 7, 363–372.

    Google Scholar 

  • Elliott, W. P.: 1958, ‘The Growth of the Atmospheric Internal Boundary Layer',Trans. Amer. Geophys. Union 39, 1048–1054.

    Google Scholar 

  • Finnigan, J. J. and Brunet, Y.: 1995, ‘Turbulent Airflow in Forests on Flat and Hilly Terrain’, in M. Coutts and J. Grace (eds.), Wind and Trees, Cambridge University Press, pp. 3–40.

  • Gardiner, B. A.: 1994, ‘Wind and Wind Related Forces in a Plantation Spruce Forest’, Boundary-Layer Meteorol. 67, 161–186.

    Google Scholar 

  • Garratt, J. R.: 1990, ‘The Internal Boundary Layer - A Review’, Boundary-Layer Meteorol. 47, 17–40.

    Google Scholar 

  • Gash, J. H. C.: 1986: ‘Observations of Turbulence Downwind of a Forest-Heath Transition’, Boundary-Layer Meteorol. 36, 227–237.

    Google Scholar 

  • Gill, G. C.: 1975, ‘Development and Use of the Gill UVW Anemometer’, Boundary-Layer Meteorol. 8, 475–495.

    Google Scholar 

  • Hobbs, S. E.: 1994, ‘Calibration and Performance Evaluation of a Lightweight Propellor Anemometer for Micrometeorological Research’, Boundary-Layer Meteorol. 68, 259–273.

    Google Scholar 

  • Højstrup, J.: 1981, ‘A Simple Model for the Adjustment of Velocity Spectra in Unstable Conditions Downstream of an Abrupt Change in Roughness and Heat Flux’, Boundary-Layer Meteorol. 21, 341–356.

    Google Scholar 

  • Horst, T. W.: 1973, ‘Corrections for Response Errors in a Three Component Propellor Anemometer’, J. Appl. Meteorol. 12, 716–725.

    Google Scholar 

  • Irvine, M. R.: 1994, ‘Turbulence and Turbulent Transport Above and Within Coniferous Forests’, Ph.D. Thesis University of Liverpool, U.K.

    Google Scholar 

  • Jarvis, P. J., James, G. B., and Landsberg, J. J.: 1976, ‘Coniferous Forest’, in J. L. Monteith (ed.), Vegetation and the Atmosphere, Vol. 2, Academic Press, London, pp. 171–240.

    Google Scholar 

  • Kaimal, J. C., Wyngaard, J. C., Haugen, D. A., Coté, O. R., Izumi, Y., Caughry, S. J., and Readings, C. J.: 1972, ‘Turbulence Structure in the Convective Boundary Layer’, J. Atmos Sci. 33, 2152–2169.

    Google Scholar 

  • Kaimal, J. C. and Finnigan J. J.: 1994, Atmospheric Boundary Layer Flows, Oxford University Press, 289 pp.

  • Kawatani, T. and Sadeh, W. Z.: 1971, ‘An Investigation of Flow over High Roughness’, Technical Report 11, Dept. of Civil Engineering, Colorado State University.

  • Klaassen, W.: 1992, ‘Average Fluxes from Heterogeneous Vegetated Regions’, Boundary-Layer Meteorol. 58, 329–354.

    Google Scholar 

  • Kruijt, B., Klaassan, W., and Hutjes, R. W. A.: 1995, ‘Adjustment of Turbulent Momentum Flux Over Forest Downwind of an Edge’, in J. Grace and M. Coutts (eds.), Wind and Trees, Cambridge University Press, pp. 60–70.

  • Kruijt, B.: 1994, ‘Turbulence Over Forest, Downwind of an Edge’, Ph.D. Thesis, University of Groningen.

  • Li, Z., Miller, D. R., and Lin, J. D.: 1985, ‘AFirst Order Closure Scheme to Describe Counter-Gradient Momentum Transport in Plant Canopies’, Boundary-Layer Meteorol. 33, 77–83.

    Google Scholar 

  • Li, Z.: 1989, ‘A Numerical Study of Air Flow in the Atmospheric Surface Layer with a Step Change in Ground Cover Condition’, Technical Report U.S. Forest Service.

  • Li, Z., Lin, J. D., and Miller, D. R.: 1990, ‘Air Flow Over and Through a Forest Edge: A Steady-State Numerical Simulation’, Boundary-Layer Meteorol. 51, 179–197.

    Google Scholar 

  • Luhar, A. K. and Rao, K. S.: 1994, ‘Source Footprint Analysis for Scalar Fluxes Measured in Flows Over an Inhomogeneous Surface’, in S. V. Gryning and M. M. Millan (eds.), Air Pollution Modelling and its Application, Plenium Press New York, pp. 315–322.

  • Luppes, R.: 1993, ‘Atmospheric Flow in Heterogeneous Vegetated Regions’, Report W-9303,Dept. of Mathematics, University of Groningen.

  • Monin, A. S. and Obukhov, A. M.: 1954, ‘Basic Laws of Turbulent Mixing in the Ground Layer of the Atmosphere’, Trans. Geophys. Inst. Akad. Nauk USSR 151, 163–187.

    Google Scholar 

  • Munro, D. S. and Oke, T. R.: 1975, ‘Aerodynamic Boundary-Layer Adjustment Over a Crop in Neutral Stability’, Boundary-Layer Meteorol. 9, 53–61.

    Google Scholar 

  • Otnes, R. K. and Enochson, L.: 1978, Applied Time Series Analysis, Vol. 1, John Wiley and Son Publishers, 279 pp.

  • Ower, E. and Parkhurst, R. C.: 1977, The Measurement of Airflow, Pergamon Press, Oxford, 362 pp.

    Google Scholar 

  • Pond, S., Large W. G., Miyake, M., and Burling, R. W.: 1979, ‘A Gill Twin Propellor Vane Anemome-ter for Flux Measurements during Moderate and Strong Winds’, Boundary-Layer Meteorol. 16, 351–364.

    Google Scholar 

  • Panofsky, H. A., Larko, D., Lipschutz, R., Stone, G., Bradley, E. F., Bowen, A. J., and Hojstrup, J.: 1982, ‘Spectra of Velocity Components Over Complex Terrain’, Quart. J. Roy. Meteorol. Soc. 108, 215–230.

    Google Scholar 

  • Panofsky, H. A. and Dutton, J. A.: 1984, Atmospheric Turbulence, Wiley-Interscience, New York, 160 pp.

    Google Scholar 

  • Raupach, M. R.: 1988, ‘Canopy Transport Processes’, in W. L. Steffen and O. T. Denmead (eds.),Flow and Transport in the Natural Environment: Advances and Apllications, Springer-Verlag, London, pp. 95–127.

    Google Scholar 

  • Raupach, M. R. and Thom, A. S.: 1981, ‘Turbulence in and Above Plant Canopies’, J. Appl. Meteorol. 16, 514–521.

    Google Scholar 

  • Raynor, G. S.: 1971, ‘Wind and Temperature Structure in a Coniferous Forest and a Contiguous Field’, Forest Sci. 17, 351–363.

    Google Scholar 

  • Schlichting, H.: 1960, Boundary Layer Theory, 4th Edition. McGraw-Hill, New York, 747 pp.

    Google Scholar 

  • Schuepp, P. H., Leclerc, M. Y., MacPherson, J. L., and Desjardins, R. L.: 1990, ‘Footprint Prediction of Scalar Fluxes fromAnalytical Solutions of the Diffusion Equation’, Boundary-Layer Meteorol. 50, 355–373.

    Google Scholar 

  • Stacey, G. R., Belcher, R. E., Wood, C. J., and Gardiner, B. A: 1994, ‘Wind Flows and Forces in a Model Spruce Forest’, Boundary-Layer Meteorol. 69, 311–334.

    Google Scholar 

  • Stull, R. B.: 1988, An Introduction to Boundary Layer Meteorology, Kluwer, Dordrecht, 120 pp.

    Google Scholar 

  • Taylor, G. I.: 1938, ‘The Spectrum of Turbulence’, Proc. Roy. Soc. London, Ser. A 164, 476–490.

    Google Scholar 

  • Thom, A. S.: 1975, ‘Momentum, Mass and Heat Exchange of Plant Communities’, in J. L. Monteith (ed.), Vegetation and the Atmosphere, Vol. 2, Academic Press, London, pp. 57–109.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irvine, M.R., Gardiner, B.A. & Hill, M.K. The Evolution Of Turbulence Across A Forest Edge. Boundary-Layer Meteorology 84, 467–496 (1997). https://doi.org/10.1023/A:1000453031036

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1000453031036

Navigation