Skip to main content
Log in

Characterization of Porin from Roseobacter denitrificans

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Porin from Roseobacter denitrificans was isolated and purified to homogeneity. The pore characteristics from this marine bacterium were compared to those of its phylogenetically closely related freshwater bacteria Rhodobacter capsulatus 37b4, Rhodobacter sphaeroides and Rhodopseudomonas blastica. The porin formed weakly cation-selective, general diffusion pores in lipid bilayer membranes. High transmembrane potentials caused channel closing in steps that were of one or two thirds of the initial on-steps indicating that the porin of R. denitrificans comprised three more or less independent channels similar to PhoE and OmpC of Escherichia coli and the porin of Rhodobacter capsulatus. Prediction of the secondary structure of the 36 N-terminal amino acid residues indicated two transmembrane β-strands similar to those of the porins of Rhodobacter capsulatus 37b4 and Rhodopseudomonas blastica. Differences of the single channel conductivities between the porin of R. denitrificans and those of the related freshwater bacteria show that R. denitrificans evolved porin channels that are well adapted to the marine habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benz R, Janko K & Läuger P (1979) Ionic selectivity of pores formed by the matrix protein (porin) of Escherichia coli. Biochim. Biophys. Acta 551: 238–247

    Google Scholar 

  • Benz R, Schmid A & Hancock REW (1985) Ion selectivity of gramnegative bacterial porins. J. Bacteriol. 162: 722–727

    Google Scholar 

  • Benz R, Woitzik D, Flammann HT & Weckesser J (1987) Pore forming activity of the major outer membrane protein of Rhodobacter capsulatus in lipid bilayer membranes. Arch. Microbiol. 14: 226–230

    Google Scholar 

  • Benz R & Bauer K (1988) Permeation of hydrophilic molecules through the outer membrane of gram-negative bacteria. Eur. J. Biochem. 176: 1–19

    Google Scholar 

  • Benz R (1988) Structure and function of porins from Gram-negative bacteria. Annu. Rev. Microbiol. 42: 359–393

    Google Scholar 

  • Benz R (1994) Solute uptake through bacterial outer membranes. In: Bacterial Cell Wall, pp. 397–423 Edited by R. Hackenbek & J.-M. Ghuysen. Amsterdam: Elsevier

    Google Scholar 

  • Butz S, Benz R, Wacker T, Welte W, Lustig A, Plapp R & Weckesser J (1993) Biochemical characterization and crystallization of porin from Rhodospseudomonas blastica. Arch. Microbiol. 159: 301–307

    Google Scholar 

  • Capaldi RA & Vanderkooi G (1972) The low polarity of many membrane proteins. Proc. Natl. Acad. Sci. USA 69: 930–932

    Google Scholar 

  • Cowan SW, Schirmer T, Rummel G, Steiert M, Gosh R, Pauptit RA, Jansonius JN & Rosenbusch JP (1992) Crystal structures explain functional properties of two E. coli porins. Nature 358: 727–733

    Google Scholar 

  • Fuerst JA, Hawkins JA, Holmes A, Sly LI, Moore CJ & Stackebrandt E (1993) Porphyrobacter neustonensis gen. nov., sp. nov., an aerobic bacteriochlorophyll-synthesizing budding bacterium from fresh water. Int. J. Syst. Bacteriol. 43: 125–134

    Google Scholar 

  • Imhoff JF (1989) The family Ectothiorhodospiraceae. In: Staley JT, Bryant MP, Pfennig N, Holt JG (Eds.) Bergey's manual of systematic bacteriology, 1st edn, vol 3. Williams & Wilkins, Baltimore, pp 1654–1658

    Google Scholar 

  • Jap BK (1989) Molecular design of PhoE porin and its functional consequences. J. Mol. Biol. 205: 407–419

    Google Scholar 

  • Karshikoff A, Spassov V, Cowan SW, Ladenstein R & Schirmer T (1994) Electrostatic properties of two porin channels from Escherichia coli. J. Mol. Biol. 240: 372–84

    Google Scholar 

  • Kreusch A, Neubüser A, Schiltz E, Weckesser J & Schulz GE (1994) Structure of the membrane channel porin from Rhodopseudomonas blastica at 2.0 Å resolution. Prot. Sci. 3: 58–63

    Google Scholar 

  • Kyte J & Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157: 105–132

    Google Scholar 

  • Lowry OH, Roberts NJ, Farr AL & Randall RJ (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275

    Google Scholar 

  • Neumann U, Mayer H, Schiltz E, Benz R & Weckesser J (1995) Lipopolysaccharide and porin of Roseobacter denitrificans, confirming its phylogenetic relationship to the α-3-subgroup of Proteobacteria. Microbiology 141: 2013–2017

    Google Scholar 

  • Nikaido H (1992) Porins and specific channels of bacterial outer membranes. Molec. Microbiol. 6: 435–442

    Google Scholar 

  • Nikaido H & Rosenberg EY (1981) Effect of solute size on diffusion through the transmembrane pores of the outer membrane of Escherichia coli. J. Gen. Physiol. 77: 121–135

    Google Scholar 

  • Rodriguez-Vico F, Martinez-Cayuela M, Garcia-Peregrin E & Ramirez H (1989) A procedure for eliminating interferences in the Lowry method of protein determination. Anal Biochem 183: 275–278

    Google Scholar 

  • Schiltz E, Kreusch A, Nestel U & Schulz GE (1991) Primary structure of porin from Rhodobacter capsulatus. Eur. J. Biochem. 199: 587–594

    Google Scholar 

  • Sen K, Hellman J & Nikaido H (1988) Porin channels in intact cells of Escherichia coli are not affected by Donnan potentials across the outer membrane. J. Biol. Chem. 263: 1182–1187

    Google Scholar 

  • Shioi Y (1986). Growth characteristics and substrate specifity of aerobic photosynthetic bacterium Erythrobacter sp. (OCh 114). Plant Cell Physiol. 27: 567–572

    Google Scholar 

  • Todt CJ & McGroarty JE (1992) Involvement of histidine-21 in the pH-induced switch in porin channel size. Biochemistry 31: 10479–82

    Google Scholar 

  • Vogel H & Jähnig F (1986) Models for the structure of outer-membrane proteins of Escherichia coli derived from Raman spectroscopy and prediction methods. J. Mol. Biol. 190: 191–199

    Google Scholar 

  • Weckesser J, Zalman S & Nikaido H (1984) Porin from Rhodopseudomonas sphaeroides. J Bacteriol. 159: 199–205

    Google Scholar 

  • Weiss MS, Kreusch A, Schiltz E, Nestel U, Welte W Weckesser J & Schulz GE (1991) The structure of Porin from Rhodobacter capsulatus at 1.8 Å resolution. FEBS Lett. 280: 379–382

    Google Scholar 

  • Wolf E, Zahr M, Benz R, Imhoff JF, Lustig A, Schiltz E, Stahl-Zeng J & Weckesser J (1996) The porins from the halophilic species Ectothiorhodospira shaposhnikovii and Ectothiorhodospira vacuolata. Arch. Microbiol. 166: 169–175

    Google Scholar 

  • Woitzik D, Weckesser J, Benz R, Stevanovic S, Jung G & Rosenbusch JP (1990) Porin of Rhodobacter capsulatus: biochemical and functional characterization. Z. Naturforsch. 45c: 576–582

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neumann, U., Maier, E., Schiltz, E. et al. Characterization of Porin from Roseobacter denitrificans. Antonie Van Leeuwenhoek 72, 135–140 (1997). https://doi.org/10.1023/A:1000262802010

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1000262802010

Navigation