Skip to main content
Log in

DECAY OF CONVECTIVE TURBULENCE REVISITED

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Results of a large-eddy simulation of a decaying convective mixed layer over land are presented. The time evolution of the mixed layer is forced by the surface heat flux gradually decreasing with time. The results obtained show that the decay of the turbulent kinetic energy is governed by two scales, the external time scale controlling the surface heat flux changes, and the convective time scale. During the simulation, large eddies persist even when the heat flux at the surface becomes negative. A decoupled residual layer of active turbulence is developed above the stable surface layer. The residual layer is marked by large-scale updrafts that are able to penetrate the capping inversion layer and induce entrainment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrè, J. C., De Moor, G., Lacarrere, P., Theory, G., and Du Vachat, R.: 1978, 'Modeling the 24-Hour Evolution of the Mean and Turbulent Structures of the Planetary Boundary Layer’, J. Atmos. Sci. 35, 1861–1883.

    Google Scholar 

  • Ball, F. K.: 1960. 'Control of the Inversion Height by Surface Heating’, Quart. J. Roy. Meteorol. Soc. 86, 483–494.

    Google Scholar 

  • Betts, A. K.: 1973, 'Non-Precipitrating Cumulus Convection and its Parameterization’, Quart. J. Roy. Meteorol. Soc. 99, 178–196.

    Google Scholar 

  • Deardorff, J. W.: 1970a, 'Preliminary Results from Numerical Integration of the Unstable Planetary Boundary Layers’, J. Atmos. Sci. 27, 1209–1211.

    Google Scholar 

  • Deardorff, J. W.: 1970b, 'Convective Velocity and Temperature Scales for Unstable Planetary Bound-ary Layer and for Rayleigh Convection’, J. Atmos. Sci. 29, 1211–1212

    Google Scholar 

  • Deardorff, J. W.: 1974a: 'Three-Dimensional Numerical Study of the Height and Mean Structure of a Heated Planetary Boundary Layer’, Boundary-Layer Meteorol. 7, 81–106.

  • Deardorff, J. W.: 1974b, 'Three-Dimensional Numerical Study of Turbulence in an Entraining Mixed Layer’, Boundary-Layer Meteorol. 7, 199–226.

    Google Scholar 

  • Deardorff, J. W.: 1976, 'On the Entrainment Rate of a Stratocumulus-Topped Mixed Layer’, Quart. J. Roy. Meteorol. Soc. 102, 563–582.

    Google Scholar 

  • Deardorff, J. W.: 1979, 'Prediction of Convective Mixed-Layer Entrainment for Realistic Capping Inversion Structure’, J. Atmos. Sci. 36, 424–436.

    Google Scholar 

  • Kaimal, J. C., Wyngaard, J. C., Haugen, D. A., Cotè, O. R., Izumi, Y., Caughey, S. F., and Readings, C. J.: 1976, 'Turbulence Structure in the Convective Boundary Layer’, J. Atmos. Sci. 33, 2152–2169.

    Google Scholar 

  • Lilly, D. K.: 1968, 'Models of Cloud-Capped Mixed Layers under a Strong Inversion’, Quart. J. Roy. Meteor. Soc. 94, 292–309.

    Google Scholar 

  • Mahrt, L.: 1979, 'Penetrative Convection at the Top of a Growing Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 105, 969–985.

    Google Scholar 

  • Mason, P.J.: 1989, Large-Eddy Simulation of the Convective Atmospheric Boundary Layer’, J. Atmos. Sci. 46, 1492–1516.

    Google Scholar 

  • Moeng, C.-H.: 1984, 'A Large-Eddy Simulation Model for the Study of Planetary Boundary-Layer Turbulence’, J. Atmos. Sci. 41, 2052–3169.

    Google Scholar 

  • Nieuwstadt, F. T. M. and Brost, R. A.: 1986, 'The Decay of Convective Turbulence’, J. Atmos. Sci. 43, 532–546.

    Google Scholar 

  • Nieuwstadt, F. T. M., Mason, P. J., Moeng, C. H., and Schumann, U.: 1992, 'Large-Eddy Simulation of Convective Boundary-Layer: A Comparison of Four Computer Codes’, in F. Durst et al.(eds.), Turbulent Shear Flows8, Springer-Verlag, pp. 343–367.

  • Schemm, C. E. and Lipps, F. B.: 1976, 'Some Results froma Simplified Three-Dimensional Numerical Model of Atmospheric Turbulence’, J. Atmos. Sci. 33, 1021–1041.

    Google Scholar 

  • Schmidt, H. and Schumann, U.: 1989, 'Coherent Structure of the Convective Boundary Layer Derived from Large-Eddy Simulation’, J. Fluid Mech. 200, 511–562.

    Google Scholar 

  • Schumann, U.: 1991a, 'Subgrid Length-Scales for Large-Eddy Simulation of Stratified Turbulence’, Theory Comput. Fluid Dyn. 2, 279–290.

    Google Scholar 

  • Schumann, U.: 1991b, 'Simulations and Parameterizations of Large Eddies in Convective Atmospher-ic Boundary Layers’, Workshop on Fine Scale Modelling and the Development of Parameteriza-tion Schemes, European Centre for Medium-Range Weather Forecasts, pp. 21–51.

  • Sommeria, G.: 1976, 'Three-Dimensional Simulation of Turbulent Processes in an Undisturbed Trade Wind Boundary Layer’, J. Atmos. Sci. 33, 216–241.

    Google Scholar 

  • Sorbjan, Z.: 1996a, 'Numerical Study of Penetrative and "Solid-Lid" Non-Penetrative Convective Boundary Layers’, J. Atmos. Sci. 53, 101–112

    Google Scholar 

  • Sorbjan, Z.: 1996b, 'Effects Caused by Varying the Strength of the Capping Inversion Based on a Large Eddy Simulation Model of the Shear-Free Convective Boundary Layer’, J. Atmos. Sci. 53, 101–112

    Google Scholar 

  • Sun, W.-Y., and Ogura, Y.: 1980, 'Modeling the Evolution of the Convective Planetary Boundary Layer’, J. Atmos. Sci. 37, 1558–1572.

    Google Scholar 

  • Sun W.-Y.: 1993, 'Numerical Simulation of a Planetary Boundary Layer: Part I: Cloud-Free Case’, Beitr. Phys. Atmos. 66, 3–16.

    Google Scholar 

  • Tennekes, H.: 1973, 'A Model for the Dynamics of the Inversion Above a Convective Boundary Layer’, J. Atmos. Sci. 30, 558–567.

    Google Scholar 

  • Wyngaard J. C. and Brost, R. A.: 1984, 'Top-Down and Bottom-Up Diffusion in the Convective Boundary Layer’, J. Atmos. Sci. 41, 102–112.

    Google Scholar 

  • Yamada, T. and Mellor, G.: 1975, 'A Simulation of the Wangara Atmospheric Boundary Layer Data’, J. Atmos. Sci. 32, 2309–2338.

    Google Scholar 

  • Yamada, T.: 1979, 'Prediction of the Nocturnal Surface Inversion Height’, J. Atmos. Sci. 18, 526–531.

    Google Scholar 

  • Zeman, O. and Tennekes, H.: 1977, 'Parameterization of the Turbulent Energy Budget at the Top of the Daytime Atmospheric Boundary Layer’, J. Atmos. Sci. 34, 111–123.

    Google Scholar 

  • Zeman, O. and Lumiey, J. L.: 1976, 'Modeling Buoyancy Driven Mixed Layers’, J. Atmos. Sci. 33, 1974–1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorbjan, Z. DECAY OF CONVECTIVE TURBULENCE REVISITED. Boundary-Layer Meteorology 82, 503–517 (1997). https://doi.org/10.1023/A:1000231524314

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1000231524314

Keywords

Navigation