Skip to main content
Log in

AN EVALUATION OF SEVERAL TURBULENCE SCHEMES FOR THE PREDICTION OF MEAN AND TURBULENT FIELDS IN COMPLEX TERRAIN

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A prognostic three-dimensional mesoscale model has been developed andused in one- and two-dimensional modes to evaluate ten local turbulenceclosure schemes. The schemes ranged from first-order to the two-equationprognostic schemes. Predictions by the models were compared for aone-dimensional convective boundary layer using mixed layer scaling andmeasurements to interpret the results. Two-dimensional simulations were alsoperformed for a sea-breeze flow and for flow over a hill. The results showedthat for all of the models considered, minor differences were produced in themean meteorological fields and in the vertical scalar fluxes, but majordifferences were apparent in the velocity variances and dissipation rate.Predicted tracer concentrations were very sensitive to the turbulence modelformulation for dispersion from a point source in the convective boundarylayer, particularly for the prediction of maximum concentrations. Predictedtracer concentrations from a surface volume source for the two-dimensionalsimulations were similar for all models, although the degree of mixing in themorning growth period produced some differences. Generally, good results forthe mean meteorological fields can be obtained with first-order schemes, evenif they underpredict the magnitude of turbulence in the convective boundarylayer, and reasonable tracer concentrations can also be obtained with thesemodels provided near-source effects are not important. The two-equationprognostic models performed best for the prediction of turbulence in theconvective boundary layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andre, J. C., DeMoor, G., Lacarrere, P., and Du Vachat, R.: 1976, ‘Modelling the 24-hour Evolution of the Mean and Turbulent Structures of the Planetary Boundary Layer’, J. Atmos. Sci. 35, 1861–1883.

    Google Scholar 

  • Andren, A.: 1990, ‘Evaluation of a Turbulence Closure Scheme Suitable for Air Pollution Applications’, J. Appl. Meteorol. 29, 224–239.

    Google Scholar 

  • Arritt, R. W.: 1987, ‘The Effect of Water Surface Boundary Layers’, Boundary-Layer Meteorol. 40, 101–125.

    Google Scholar 

  • Caughey, S. J. and Palmer, S. G.: 1979, ‘Some Aspects of Turbulence Structure Through the Depth of the Convective Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 105, 811–827.

    Google Scholar 

  • Deardorff, J.W. and Willis, G. E.: 1985, ‘Further Results from a LaboratoryModel of the Convective Boundary Layer’, Boundary-Layer Meteorol. 32, 205–236.

    Google Scholar 

  • Detering, H. W. and Etling D.: 1985, ‘Application of the E-€ Turbulence Model to the Athmospheric Boundary Layer’, Boundary-Layer Meteorol. 33, 113–133.

    Google Scholar 

  • Durran, D. R.: 1991, ‘The Third-order Adams-bashforth Method: An Attractive Alternative to Leapfrog Time Differencing’, Mon. Wea. Rev. 119, 702–720.

    Google Scholar 

  • Duynkerke, P.G.: 1988, ‘Application of the E-€ Turbulence Model to the Athmospheric Boundary Layer’,J. Atmos Sci. 45, 865–880.

    Google Scholar 

  • Duynkerke, P. G. and Driedonks, A. G. M.: 1987, ‘A Model for the Turbulent Structure of the Stratocumulus-topped Atmospheric Boundary Layer’, J. Atmos. Sci. 44, 43–64.

    Google Scholar 

  • Dyer, A. J. and Hicks, B. B.: 1970, ‘Flux-gradient Relationships in the Constant Flux Layer’, Quart. J. Roy. Meteorol. Soc. 96, 715–721.

    Google Scholar 

  • Enger, L.: 1986, ‘A Higher Order Closure Model Applied to Dispersion in a Convective pbl’, Atmos. Environ. 20, 879–894.

    Google Scholar 

  • Gibson, M. M. and Launder, B. E.: 1978, ‘Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer’, J. Fluid Mech. 86, 491–511.

    Google Scholar 

  • Hanjalic, K. and Launder, B. E.: 1972, ‘A Reynolds Stress Model of Turbulence and its Application to Thin Shear Flows’, J. Fluid Mech. 52, 609–638.

    Google Scholar 

  • Helfand, H. M. and Labraga J. C.: 1988, ‘Design of a Non-singular Level 2.5 Second-order Closure Model for the Prediction of Atmospheric Turbulence’, J. Atmos. Sci. 45, 113–132.

    Google Scholar 

  • Holt, T. and Raman, S.: 1988, ‘A Review and Comparative Evaluation of Multilevel Boundary Layer Parameterisations for First Order and Turbulent Kinetic Energy Closure Schemes’, Rev. Geophys. Space Phys. 26, 761–780.

    Google Scholar 

  • Huang, C.-Y. and Raman, S.: 1989, ‘Application of the E-€ Turbulence Model of the Convective Boundary Layer’, Boundary-Layer Meteorol 49, 169–195.

    Google Scholar 

  • Klemp, J. B. and Wilhelmson, R. B.: 1978, ‘The Simulation of Convective Storm Dynamics’, J. Atomos. Sci. 35, 1070–1096.

    Google Scholar 

  • Koo, Y. and Reibel, D. D.: 1995b, ‘Flow and Transport Modelling in the Sea Breeze. Part II: Flow Model Application and Pollutant Transport’, Boundary-Layer Meteorol. 76, 209–234.

    Google Scholar 

  • Kowalczyk, E. A., Garratt, J. R., and Krummel, P. B.: 1991, ‘A Soil-canopy Scheme for Use in a Numerical Model of the Atmosphere-1D Stand Alone Model’, CSIRO Division of Atmospheric Research Technical Report No. 23. 56 pp. ai]Launder, B. E.: 1990, ‘Phenomenological Modelling: Present:::and Future’, in J. L. Lumley (ed.), Wither Turbulence?: Turbulence at the Cross Roads, Springer-Verlag, Berlin, New York. 534 pp. ai]Louis, J-F.: 1979, ‘A Parametric Model of Vertical Eddy Fluxes in the Atmosphere’, Boundary-Layer Meteorol. 17, 187–202.

    Google Scholar 

  • Lumley J. L.: 1978, ‘Computational Modelling of Turbulent Flows’, Adv. Appl. Mech. 18, 123–175.

    Google Scholar 

  • McInnes, K. L. and Curry, J. A.: 1995, ‘Modelling the Mean and Turbulent Structure of the Summertime Artic Cloudy Boundary Layer’, Boundary-Layer Meteorol. 73, 125–143.

    Google Scholar 

  • McNider, R. T. and Pielke, R. A.: 1981, ‘Diurnal Boundary-layer Development over Sloping Terrain’, J. Atmos. Sci. 38, 2198–2212.

    Google Scholar 

  • Mahfouf, J. F., Richard, E., Mascart, P., Nickerson, E. C., and Rosset, R.: 1987, ‘A Comparative Study of Various Parameterisations of the Planetary Boundary Layer in a Numerical Mesoscale Model’,J. Climate 26, 1671–1695.

    Google Scholar 

  • Mahrer, Y. and Pielke, R. A,: 1977, ‘A Numerical Study of the Airflow over Irregular Terrain’, Beitr. Phys. Atmosph. 50, 98–113.

    Google Scholar 

  • Mahrer, Y. and Pielke, R. A.: 1978, ‘A Test of an Upstream Spline Interpolation Technique for the Advective Terms in a Numerical Mesoscale Model’, Mon. Wea. Rev. 106, 818–830.

    Google Scholar 

  • Mellor, G. L. and Yamada T.: 1974, ‘A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers’, J. Atmos. Sci. 31, 1792–1806.

    Google Scholar 

  • Mellor, G. L. and Yamada T.: 1982, ‘Development of a Turbulence Closure Model for Geophysical Fluid Problems’, Rev. Geophys. Space Phys. 20, 851–875.

    Google Scholar 

  • Musson-Genon, L.: 1995, ‘Comparison of Different Simple Turbulence Closures with a One Dimensional Boundary Layer Model’, Mon. Wea. Rev. 123, 163–180.

    Google Scholar 

  • O'Brien, J. J.: 1970, ‘A Note on the Vertical Structure of the Eddy Exchange Coefficient in the Planetary Boundary Layer, J. Atmos. Sci. 27, 1213–1215.

    Google Scholar 

  • Paltridge, G. W. and Platt, C. M. R.: 1976, 'Radiative Processes in Meteorology and Climatology’, Elsevier Scientific Publishing Company, Amsterdam. 318 pp.

    Google Scholar 

  • Physick, W. L., Noonan, J. A., McGregor, J. L., Hurley, P. J., Abbs, D. J., and Manins, P. C.: 1994, ‘LADM: A Lagrangian Atmospheric Dispersion Model’, CSIRO Division of Atmospheric Research Technical Report No. 24. 137 pp.

  • Turbulence Model}', in J.C.R. Hunt (ed.), Turbulence and Diffusion in Stable Environments, Clarendon Press, Oxford, 111–143.

    Google Scholar 

  • Simpson, J. E. and Britter R. E.: 1980, ‘A Laboratory Model of an Atmospheric Mesofront’, Quart. J. Roy. Meteorol. Soc. 106, 485–500.

    Google Scholar 

  • Stull, R. B.: 1988, ‘An Introduction to Boundary Layer Meteorology’, Kluwer Academic Publishers, Dordrecht. 666 pp.

  • Sha, W., Kawamura, T., and Ueda H.: 1991: ‘A Numerical Study on Sea/land Breezes as a Gravity Current: Kelvin-Helmholtz Billows and Inland Penetration of the Sea Breeze Front’, J. Atmos. Sci. 48, 1649–1665.

    Google Scholar 

  • Therry,G. and Lacarrere, P.: 1983, ‘Improving the Eddy Kinetic Energy Model for PlanetaryBoundary Layer Description’, Boundary-Layer Meteorol. 25, 63–88.

    Google Scholar 

  • Unsworth, M. H. and Monteith, J. L.: 1975, ‘Longwave Radiation at the Ground: I. Angular Distribution of Incoming Radiation’, Quart. J. Roy. Meteorol. Soc. 101, 13–24.

    Google Scholar 

  • Wyngaard, J. C. and Cote, O. R.: 1974, ‘The Evolution of a Convective Planetary Boundary Layer-a Higher-order-closure Model Study’, Boundary-Layer Meteorol. 7, 289–308.

    Google Scholar 

  • Yamada, T.: 1983, ‘Simulations of Nocturnal Drainage Flows by a q2l Turbulence Closure Model’, J. Atmos. Sci. 40, 91–106.

    Google Scholar 

  • Yamada, T. and Kao, C.-Y. J.: 1986, 'A Modelling Study on the FairWeatherMarine Boundary Layer of the GATE', J. Atmos. Sci. 43, 3186–3199.

    Google Scholar 

  • Young, G. S.: 1988, ‘Turbulence Structure of the Convective Boundary Layer. Part I: Variability of Normalised Turbulence Statistics’,J. Atmos. Sci. 45, 719–726.

    Google Scholar 

  • Zeman, O. and Lumley, J. L.: 1976, ‘Modelling Buoyancy Driven Mixed Layers’,J. Atmos. Sci. 33, 1974–1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HURLEY, P.J. AN EVALUATION OF SEVERAL TURBULENCE SCHEMES FOR THE PREDICTION OF MEAN AND TURBULENT FIELDS IN COMPLEX TERRAIN. Boundary-Layer Meteorology 83, 43–73 (1997). https://doi.org/10.1023/A:1000217722421

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1000217722421

Navigation