Skip to main content
Log in

ENERGY-INERTIAL SCALE INTERACTIONS FOR VELOCITY AND TEMPERATURE IN THE UNSTABLE ATMOSPHERIC SURFACE LAYER

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Triaxial sonic anemometer velocity and temperature measurements were used to investigate the local structure of the velocity and temperature fluctuations in the unstable atmospheric surface layer above a grass-covered forest clearing. Despite the existence of a 2/3 power law in the longitudinal velocity (2 decades) and temperature (1 decade) structure functions, local isotropy within the inertial subrange was not attained by the temperature field, although a near-isotropic state was attained by the velocity field. It was found that sources of anisotropy were due to interactions between the large-scale and small-scaleeddy motion, and due to localvelocity-thermal interactions. Statistical measures were developed and used to quantify these types of interactions. Other types of interactions were also measured but were less significant. The temperature gradient skewness was measured and found to be non-zero in agreement with other laboratory flow types for inertial subrange scales. Despite these interactions and anisotropy sources in the local temperature field, Obukhov’s 1949hypothesis for the mixed velocity-temperature structure functions was found to be valid. Finally, our measurements show that while a 2/3 power-law in the longitudinal velocity structure function developed at scales comparable to five times the height from the ground surface (z), near-isotropic conditions wereachieved at scales smaller than z/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonia, R. A. and Van Atta, C. W.: 1975, 'On the Correlation between Temperature and Velocity Dissipation Fields in a Heated Turbulent Jet', J. Fluid Mech. 67, 273–287.

    Google Scholar 

  • Antonia, R. A. and Van Atta, C. W.: 1978, 'Structure Functions of Temperature Fluctuations in Turbulent Shear Flows', J. Fluid Mech. 84, 561–580.

    Google Scholar 

  • Antonia, R. A. and Chambers, A. J.: 1978, 'Note on the Temperature Ramp Structure in the Marine Surface Layer', Boundary-Layer Meteorol. 15, 347–355.

    Google Scholar 

  • Antonia, R. A., Chambers, A. J., Friehe, C. A., and Van Atta, C. W.: 1979, 'Temperature Ramps in the Atmospheric Surface Layer', J. Atmos. Sci. 36, 99–108.

    Google Scholar 

  • Antonia, R. A. and Chambers, A. J.: 1980, 'On the Correlation between Turbulent Velocity and Temperature Derivatives in the Atmospheric Surface Layer', Boundary-Layer Meteorol. 18, 399–410.

    Google Scholar 

  • Antonia, R. A., Chambers, A. J., and Bradley, E. F.: 1982, 'Relationship Between Structure Functions and Temperature Ramps in the Atmospheric Surface Layer', Boundary-Layer Meteorol. 23, 395–403.

    Google Scholar 

  • Antonia, R. A., Anselmet, F., and Chambers, A. J.: 1984, 'Assessment of Local Isotropy Using Measurements in a Turbulent Plane Jet', J. Fluid Mech. 163, 365–390.

    Google Scholar 

  • Antonia, R. A., and Kim, J.: 1994, 'A Numerical Study of Local Isotropy of Turbulence',Phys. Fluids 6, 834–841.

    Google Scholar 

  • Antonia, R. A., and Zhu, Y.: 1994, 'Inertial Range Behavior of the Longitudinal Heat Flux Cospec-trum', Boundary-Layer Meteorol. 70, 429–434.

    Google Scholar 

  • Busch, N.: 1973, 'The Surface Boundary Layer, Part I', Boundary-Layer Meteorol. 4, 213–240.

    Google Scholar 

  • Bradley, E. F., Antonia, R. A., Chambers, A. J.: 1981, 'Turbulence Reynolds Number and the Turbulent Kinetic Energy Balance in the Atmospheric Surface Layer', Boundary-Layer Meteorol. 21, 183–197.

    Google Scholar 

  • Brutsaert, W.: 1982, Evaporation into the Atmosphere: Theory, History, and Applications, Kluwer Academic Publishers, 299 pp.

  • Fisher, M. J. and Davies, P. O. A.: 1964, 'Correlation Measurements in a Non-Frozen Pattern Turbulence', J. Fluid Mech. 18, 97–116.

    Google Scholar 

  • Frisch, U., Sulem, P., and Nelkin, M.: 1978, 'A Simple Dynamical Model of Intermittent Fully Developed Turbulence', J. Fluid Mech. 87, 719–736.

    Google Scholar 

  • Gibson, C. H., Friehe, C. A., and McConnell, S. O.: 1977, 'Structure of Sheared Turbulent Fields', Phys. Fluids 20, s156–167.

    Google Scholar 

  • Gibson, C. H., Ashurst, W. T., and Kerstein, A. R.: 1988, 'Mixing of Strongly Diffusive Passive Scalars Like Temperature by Turbulence', J. Fluid Mech. 194, 261–293.

    Google Scholar 

  • Kader, B. A., Yaglom, A. M., and Zubkovskii, S. L.: 1989, 'Spatial Correlation Functions of Surface-Layer Turbulence in Neutral Stratification', Boundary-Layer Meteorol. 47, 233–249.

    Google Scholar 

  • Kaimal, J. C., Wyngaard, J. C., Izumi, Y., and Cote, O. R.: 1972, 'Spectral Characteristics of Surface Layer Turbulence', Quart. J. Roy. Meteorol. Soc. 98, 563–589.

    Google Scholar 

  • Kaimal, J. C.: 1986, 'Flux and Profile Measurements from Towers in the Boundary Layer', in D. H. Lenschow (ed.), Probing the Atmospheric Boundary Layer, American Meterological Society, Boston, Massachusetts, pp. 19–28.

    Google Scholar 

  • Kaimal, J. C., and Finnigan, J. J.: 1994, Atmospheric Boundary Layer Flows: Their Structure and Measurements, Oxford, 289 pp.

  • Katul, G. G., Parlange, M. B., and Chu, C. R.: 1994a, 'Intermittency, Local Isotropy, and Non-Gaussian Statistics in Atmospheric Surface Layer Turbulence', Physics of Fluids 7, 2480–2492.

    Google Scholar 

  • Katul, G. G.: 1994, 'A Model for Sensible Heat Flux Probability Density Function for Near-Neutral and Slightly-Stable Atmospheric Flows', B oundary-Layer Meteorol. 71, 1–20.

    Google Scholar 

  • Katul, G. G., Albertson, J. D., Chu, C. R., and Parlange, M. B.: 1994b, 'Intermittency in Atmospheric Surface Layer Turbulence: The Orthonormal Wavelet Representation', in E. Foufoula-Georgiou and P. Kumar (eds.), in Wavelets in Geophysics, Academic Press, 365 pp.

  • Katul, G. G., Parlange, M. B., Albertson, J. D., and Chu, C. R.: 1995a, 'Local Isotropy and Anisotropy in the Sheared and Heated Atmospheric Surface Layer, Boundary-Layer Meteorol. 72, 123–148.

    Google Scholar 

  • Katul, G. G., Parlange, M. B., Albertson, J. D., and Chu, C. R.: 1995b, 'The Random Sweeping Decorrelation Hypothesis in Stratified Turbulent Flows', Fluid Dyn. Res. 16, 275–295.

    Google Scholar 

  • Kerr,R.M.: 1985, 'Higher-Order Derivative Correlations and the Alignment of Small-Scale Structures in Isotropic Numerical Turbulence', . Fluid Mech. 153, 31–58.

    Google Scholar 

  • Kerr, R. M.: 1990, 'Velocity, Scalar, and Transfer Spectra in Numerical Turbulence', J. Fluid Mech. 211, 309–332.

    Google Scholar 

  • Kolmogorov, A. N.: 1941, 'The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Number', Dokl. Akad. Nauk. SSSR, 30, 301–303.

    Google Scholar 

  • Kolmogorov, A. N.: 1962, 'A Refinement of Previous Hypotheses Concerning the Local Structure of Turbulence in a Viscous Incompressible Fluid at High Reynolds Number', J. Fluid Mech. 13, 82–85.

    Google Scholar 

  • Kuznetsov, V. R., Praskovsky, A. A., and Sabelnikov, V. A.: 1992, 'Fine-Scale Turbulence Structure of Intermittent Shear Flows', J. Fluid Mech. 243, 595–622.

    Google Scholar 

  • Landau, L. D., and Lifshitz, E. M.: 1986, Fluid Mechanics, Pergamon Press, 539 pp.

  • Jayesh, C. Tong, and Warhaft, Z.: 1994, 'On Temperature Spectra in Grid Turbulence', Phys. Fluids 6, 306–312.

    Google Scholar 

  • Lin, C.C.: 1953, 'On Taylor'sHypothesis and theAcceleration Terms in theNavier-Stokes Equations', Q. Appl. Math. X, 154–165.

    Google Scholar 

  • Lumley, J. and Panofsky, H.: 1964, The Structure of Atmospheric Turbulence, John Wiley and Sons, 229 pp.

  • Lumley, J. L.: 1965, 'Interpretation of Time Spectra Measured in High-Intensity Shear Flows', Phys. Fluids 8, 1056–1062.

    Google Scholar 

  • Mahrt, L.: 1989, 'Intermittency of Atmospheric Turbulence', J. Atmos. Sci. 46, 79–95.

    Google Scholar 

  • Mestayer, P.: 1982, 'Local Isotropy and Anisotropy in a High Reynolds Number Turbulent Boundary Layer', J. Fluid Mech. 125, 475–503.

    Google Scholar 

  • Mizuno, T. and Panofsky, H. A.: 1975, 'The Validity of Taylor's Hypothesis in the Atmospheric Surface Layer', Boundary-Layer Meteorol. 9, 375–380.

    Google Scholar 

  • Monin, A. S. and Yaglom, A. M.: 1971, Statistical Fluid Mechanics, Vol. I., MIT Press, 769 pp.

    Google Scholar 

  • Monin, A. S. and Yaglom, A. M.: 1975, Statistical Fluid Mechanics, Vol. II, MIT Press, 875 pp.

    Google Scholar 

  • Obukhov, A. M.: 1949, 'Local Structure of Atmospheric Turbulence', Dokl. Akad. Nauk. SSSR 67, 643–646.

    Google Scholar 

  • Panofsky, H. and Dutton, J.: 1984, Atmospheric Turbulence: Models and Methods for Engineering Applications, John Wiley and Sons, 397 pp.

  • Pond, S., Stewart, R.W., and Burling, R.W.: 1963, 'Turbulence Spectra in the Wind Over Waves', J. Atmos. Sci. 20, 319–324.

    Google Scholar 

  • Powell, D. C. and Elderkin, C. E.: 1974, 'An Investigation of the Application of Taylor's Frozen Hypothesis to Atmospheric Boundary Layer Turbulence', J. Atmos. Sci. 31, 990–1002.

    Google Scholar 

  • Praskovsky, A. A., Gledzer, E. B., Karyakin, M. Y., and Zhou, Y.: 1993, 'The Sweeping Decorrelation Hypothesis and Energy-Inertial Scale Interaction in High Reynolds Number Flows', J. Fluid Mech. 248, 493–511.

    Google Scholar 

  • Saddoughi, S. G. and Veeravalli, S. V.: 1994, 'Local Isotropy in Turbulent Boundary Layers at High Reynolds Number', J. Fluid Mech. 268, 333–372.

    Google Scholar 

  • Sirivat, A. and Warhaft, Z.: 1983, 'The Effect of a Passive Cross-Stream Temperature Gradient on the Evolution of Temperature Variance and Heat Flux in Grid Turbulence', J. Fluid Mech. 128, 323–346.

    Google Scholar 

  • Sreenivasan, K. R., Antonia, R. A., and Britz, D.: 1979, 'Local Isotropy and Large Structures in a Heated Turbulent Jet', J. Fluid Mech. 94, 745–775.

    Google Scholar 

  • Sreenivasan, K. R.: 1991, 'On Local Isotropy of Passive Scalars in Turbulent Shear Flows', in J. C. R. Hunt, O.M. Phillips and D. Williams (eds.), Turbulence and Stochastic Processes: Kolmogorov's Ideas 50 Years On, Roy. Soc. 240 pp.

  • Stull, R.: 1988, An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, 666 pp.

  • Taylor, G. I.: 1938, 'The Spectrum of Turbulence', Proc. Roy. Soc. A 1164, 476–490.

    Google Scholar 

  • Tennekes, H. and Lumley, J. L.: 1972, A First Course in Turbulence, MIT Press, 300 pp.

  • Townsend, A. A.: 1976, The Structure of Turbulent Shear Flow, Cambridge University Press, 429 pp.

  • Van Atta, C. W.: 1977, 'Effect of Coherent Structures on the Structure Functions of Temperature in the Atmospheric Boundary Layer', Arch. Mech. 29, 161–171.

    Google Scholar 

  • Wyngaard, J. C. and Clifford, S. F.: 1977, 'Taylor's Hypothesis and High Frequency Turbulence Spectra', J. Atmos. Sci. 34, 922–929.

    Google Scholar 

  • Wyngaard, J. C.: 1981, 'Cup, Propeller, Vane, and Sonic Anemometer in Turbulence Research', Ann. Rev. Fluid Mech. 13, 922–929.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

KATUL, G., HSIEH, CI. & SIGMON, J. ENERGY-INERTIAL SCALE INTERACTIONS FOR VELOCITY AND TEMPERATURE IN THE UNSTABLE ATMOSPHERIC SURFACE LAYER. Boundary-Layer Meteorology 82, 49–80 (1997). https://doi.org/10.1023/A:1000178707511

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1000178707511

Keywords

Navigation