Skip to main content
Log in

Effective p-descent

  • Published:
Compositio Mathematica

Abstract

Given E, an elliptic curve defined over K, a field of positive characteristic, provided that j, the Weierstrass j-invariant, is not an element of Kp, we construct explicitly, that is, we give by a closed form formula, a non-trivial homomorphism, μ:E(K) → K+, from the group of K-rational points of E to K+, the additive group of K. In the course of our analysis we discover a canonical differential, \(\omega _q \in \Omega _{K|\mathbb{F}_p } \), associated to E and we relate it to the differential dq/q associated to the Tate curve. If the transcendence degree of K over \(\mathbb{F}_p \)is equal to one, as for example is the case for function fields in one variable, then μ is a p-descent map, that is, its kernel is equal to pE(K) and the explicit formula for μ can be used to provide effective proofs of analogues of classical theorems on elliptic curves. For example, in the author's thesis at The University of Texas at Austin the analogue of Siegel's Theorem on the finiteness of integral points of E(K) is proved effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Broumas, A.: Effective p-descent, Ph.D. Thesis, The University of Texas at Austin (1995).

  2. Buium, A., and Voloch, J. F.: Reduction of the Manin map in characteristic p, J. reine angew. Math. 460 (1995) 117–126.

    Google Scholar 

  3. Cassels, J. W. S.: Some elliptic function identities, Acta Arith. XXVIII (1971) 37–52.

    Google Scholar 

  4. Deuring, M.: Die Typen der Multiplikatorenringe elliptischer Funktionenkörper,Abh. Math. Sem. Univ. Hamburg 14 (1941) 197–272.

    Google Scholar 

  5. Gunji, H.: The Hasse invariant and p-division points of an elliptic curve, Arch.Math.(Basel) XXVII (1976) 148–158.

    Google Scholar 

  6. Hasse, H.: Existenz separabler zyklischer unverzweigter Erweiterungs-körper vom Primzahlgrade p über elliptischen Funktionenkörper der Charakteristik p, J. Reine Angew. Math. 172 (1934) p. 77–85.

    Google Scholar 

  7. Hartshorne, R.: Algebraic Geometry, Graduate Texts in Math. (52) Springer-Verlag (1977).

  8. Husemöller, D.: Elliptic curves, Graduate Texts in Math. Springer-Verlag (1987).

  9. Katz, N., and Mazur, B.: Arithmetic Moduli of Elliptic Curves, Princeton University Press (1985).

  10. Kramer, K.: Two descent for elliptic curves in characteristic two, Trans. Amer. Math. Soc. 232 (1977) 279–295.

    Google Scholar 

  11. Manin, Y. I.: Rational points of algebraic curves over function fields, Izv. Akad. Nauk SSSR Ser. Mat. 27 (1963) 1395–1440. Amer. Math. Soc. Transl. Ser.2 Vol. 50 189-234.

    Google Scholar 

  12. Serre, J. P.: Congruences et forms modulaires (d'apres H.P.F. Swinnerton-Dyer) Seminaire Bourbaki no. 416 (1971/72). Also in Collected PapersIII 74-88, Springer-Verlag (1986) Vol. I-III.

  13. Silverman, J. H.: The arithmetic of elliptic curves, Graduate Texts in Math.(106) Springer-Verlag (1986).

  14. Tate, J.: The arithmetic of elliptic curves, Invent. Math.23 (1974) 179–206.

    Google Scholar 

  15. Ulmer, D. L.: p-descent in characteristic p, Duke Math. J.62 (1991) 237–265.

    Google Scholar 

  16. Voloch, J. F.: Explicit p-descent for elliptic curves in characteristic p, Compositio Math.74 (1990) 247–258.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

BROUMAS, A. Effective p-descent. Compositio Mathematica 107, 125–141 (1997). https://doi.org/10.1023/A:1000170513383

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1000170513383

Navigation