Journal of Mammalian Evolution

, Volume 4, Issue 1, pp 19–52 | Cite as

A Reexamination of Proposed Morphology-Based Synapomorphies for the Families of Dasyuromorphia (Marsupialia). I. Dasyuridae

  • Stephen Wroe


The validity of eight morphological features previously advanced as synapomorphic for Dasyuridae is investigated in the light of new fossil and molecular data. Results indicate that one of these features (alisphenoid–periotic enclosure of the foramen ovale) is common to outgroups for Dasyuromorphia. Another feature (loss of intestinal cecum) is a likely synapomorphy for Dasyuromorphia. Two features (development of a hypoconulid notch, enlargement of stylar cusp D) may represent shared–derived characters within Dasyuromorphia but not at the family level for Dasyuridae (i.e., probably unite Dasyuridae–Thylacinidae). Another two features (loss of posterolateral palatine foramina, reduction of P3) are also apomorphic within Dasyuromorphia but unite specialized clades within Dasyuridae. Only two previously treated features are probable synapomorphies for the family (enlargement of the alisphenoid tympanic wing and development of a distinct periotic hypotympanic sinus). An additional feature is identified as a dasyurid synapomorphy (presence of a distinct tubal foramen). Of all putative synapomorphies proposed to date, only the presence of a periotic hypotympanic sinus and tubal foramen are unique for Dasyuridae among dasyuromorphians. Results suggest considerable homoplasy for basicranial features within Dasyuromorphia. Independent acquisition for alisphenoid enclosure of the foramen ovale, development of secondary foramina ovale and loss of posterolateral palatal foramina has occurred in derived thylacinid and dasyurid clades. Convergence is also indicated for hypertrophy of the alisphenoid tympanic wing shown for dasyurids and myrmecobiids, and the development of a squamosal epitympanic sinus in Thylacinidae, Dasyuridae, and Myrmecobiidae. The finding of plesiomorphy for alisphenoid–periotic enclosure of the foramen ovale within Dasyuromorphia undermines the strongest morphology-based synapomorphy uniting a monophyletic Dasyuridae–Myrmecobiidae. Phylogenetic placement for some plesiomorphic fossil dasyuromorphians, known only from dental material, within Dasyuridae is currently untenable, with no dental synapomorphies uniting the family. The value of identifying morphoclines within clades known from robust phylogenetic data for consideration in character analysis is stressed, as is the importance of form–function and ontogenetic data.

Dasyuromorphia Dasyuridae character analysis form–function homoplasy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbie, A. A. (1937). Some observations on the major subdivisions within the Marsupialia with special reference to the position of the Peramelidae and Caenolestidae. J. Anat. 71: 429–435.Google Scholar
  2. Aitken, P. F. (1971). Rediscovery of the large desert Sminthopsis (Sminthopsis psammophilus Spencer) on Eyre Peninsula, South Autralia. Victorian Nat. 88: 103–111.Google Scholar
  3. Aplin, K. P. (1990). Basicranial Regions of Diprotodontian Marsupials: Anatomy, Ontogeny and Phylogeny, Ph.D. thesis, University of New South Wales, Sydney.Google Scholar
  4. Aplin, K., and Archer M. (1987). Recent advances in marsupial systematics, with a new, higher level classification of the Marsupialia. In: Possums and Opossums: Studies in Evolution, M. Archer, ed., pp. xv–lxxii, Surrey Beatty and Sons, Sydney.Google Scholar
  5. Aplin, K. P., Baverstock, P. R., and Donnelan, S. C. (1993). Albumin immunological evidence for the time and mode of origin of the New Guinean terrestrial mammal fauna. Sci. New Guinea 19: 131–145.Google Scholar
  6. Archer, M. (1976a). Miocene marsupicarnivores (Marsupialia) from central South Australia, Ankotarinja tirarensis gen. et sp. nov., Keeuna woodburnei gen. et sp. nov., and their significance in terms of early marsupial radiations. Trans. Roy. Soc. South Aust. 100: 53–73.Google Scholar
  7. Archer, M. (1976b). The basicranial region of marsupicarnivores (Marsupialia), interrelationships of carnivorous marsupials, and affinities of the insectivorous marsupial peramelids. Zool. J. Linn. Soc. 59: 217–322.Google Scholar
  8. Archer, M. (1976c). The dasyurid dentition and its relationship to that of didelphids, thylacinids, borhyaenids (Marsupicarnivora) and Peramelids (Peramelina: Marsupialia). Aust. J. Zool. Suppl. Ser. 39: 1–34.Google Scholar
  9. Archer, M. (1982a). A review of the dasyurid (Marsupialia) fossil record, integration of data bearing on phylogenetic interpretation, and suprageneric classification. In: Carnivorous Marsupials, M. Archer, ed., pp. 397–443, Roy. Zool. Soc. N.S.W., Mosman.Google Scholar
  10. Archer, M. (1982b). A review of Miocene thylacinids (Thylacinidae, Marsupialia), the phylogenetic position of the Thylacinidae and the problem of apriorisms in character analysis. In: Carnivorous Marsupials, M. Archer, ed., pp. 445–476, Roy. Zool. Soc. N.S.W., Mosman.Google Scholar
  11. Archer, M. (1984). The Australian marsupial radiation. In: Vertebrate Zoogeography and Evolution in Australasia, M. Archer and G. Clayton, eds., pp. 633–808, Hesperian Press, Carlisle.Google Scholar
  12. Archer, M., and Kirsch, J. A. W. (1977). The case for the Thylacomyidae and Myrmecobiidae, Gill, 1872, or why are marsupial families so extended? Proc. Linn. Soc. N.S.W. 102: 18–25.Google Scholar
  13. Archer, M., and Rich, T. (1979). Wakamatha tasselli Gen. et. sp. nov., a fossil dasyurid (Marsupialia) from South Australia convergent on modern Sminthopsis. Mem. Qld. Mus. 19: 309–317.Google Scholar
  14. Archer, M., Godthelp, H., and Hand, S. J. (1992). Early Eocene marsupial from Australia. Kaupia 3: 193–200.Google Scholar
  15. Archer, M., Hand, S., and Godthelp, H. (1988). A new order of zalambdodont marsupials. Science 239: 1528–1531.Google Scholar
  16. Archer, M., Hand, S. J., and Godthelp, H. (1994). Patterns in the history of Australia's mammals and inferences about palaeohabitats. In: History of the Australian Vegetation, R. S. Hill, ed., pp. 80–103, Cambridge University Press, Cambridge.Google Scholar
  17. Archer, M., Hand, S., and Godthelp, H. (1995). Tertiary environmental and biotic change in Australia. In: Paleoclimate and Evolution, with Emphasis on Human Origins, E. S. Vrba, G. H. Denton, T. C. Partridge, and L. H. Burkle, eds., pp. 77–90, Yale University Press, New Haven, CT.Google Scholar
  18. Bartholomai, A. (1971). Dasyurus dunmalli, a new species of fossil marsupial (Dasyuridae) in the upper Cainozoic deposits of Queensland. Mem. Qld. Mus. 16: 19–26.Google Scholar
  19. Baverstock, E. R., Kreig, M., and Birrell, J. (1990). Evolutionary relationships of Australian marsupials as assessed by albumin immunology. Aust. J. Zool. 37: 273–287.Google Scholar
  20. Becht, G. (1953). Comparative biological researches on mastication in some mammals. Proc. Roy. Soc. London 56: 508–518.Google Scholar
  21. Bensley, B. A. (1903). On the evolution of the Australian Marsupialia with remarks on the relationships of marsupials in general. Trans. Linn. Soc. London (Zool.) 9: 83–217.Google Scholar
  22. Broom, R. (1909). Observations on the development of the marsupial skull. Proc. Linn. Soc. N.S.W. 34: 195–214.Google Scholar
  23. Butler, P. M. (1946). The evolution of carnassial dentitions in the Mammalia. Proc. Zool. Soc. London 116: 198–220.Google Scholar
  24. Campbell, K. S. W., and Barwick, R. E. (1990). Paleozoic dipnoan phylogeny: Functional complexes and evolution without parsimony. Paleobiol. 16: 143–169.Google Scholar
  25. Case, J. A. (1989). Cranial isometry in Australian carnivorous marsupials and phyletic relationships of the dog-like thylacines. J. Vert. Paleontol. Abstr. 9: 16A.Google Scholar
  26. Cifelli, R. L. (1993). Early Cretaceous mammal from North America and the evolution of marsupial dental characters. Proc. Natl. Acad. Sci. U.S.A. 90: 9413–9416.Google Scholar
  27. Clark, C. T., and Smith, K. K. (1993). Cranial osteogenesis in Monodelphis domestica (Didelphidae) and Macropus eugenii (Macropodidae). J. Morphol. 215: 119–149.Google Scholar
  28. Clemens, W. A. (1966). Fossil mammals of the type Lance Formation, Wyoming Part II. Marsupialia. Univ. Calif. Publ. Geol. Sci. 62: 1–122.Google Scholar
  29. Covey, D. S., and Greaves, W. W. (1994). Jaw dimensions and torsion resistance during canine biting in the Carnivora. J. Zool. 72: 1055–1060.Google Scholar
  30. Crabb, P. L. (1982). Pleistocene dasyurids from southwestern New South Wales. In: Carnivorous Marsupials, M. Archer, ed., pp. 511–516, Roy. Zool. Soc. N.S.W., Mosman.Google Scholar
  31. Cracraft, J. (1981). The use of functional and adaptive criteria in phylogenetic systematics. Am. Zool. 21:21–36.Google Scholar
  32. Crompton, A. W., and Hiiemae, K. (1970). Molar occlusion and mandibular movements during occlusion in the American opossum, Didelphis marsupialis. Zool. J. Linn. Soc. 49: 21–47.Google Scholar
  33. Dunbar, M. J. (1980). The blunting of Occam's Razor, or to hell with parsimony. Can. J. Zool. 58: 123–128.Google Scholar
  34. Edinger, T., and Kitts, D. B. (1954). The foramen ovale. Evolution 8: 389–404.Google Scholar
  35. Edwards, A. W. F. (1996). The origin and early development of the method of minimum evolution for the reconstruction of phylogenetic trees. Syst. Biol. 45: 79–91.Google Scholar
  36. Faith, D. P. (1991). Cladistic permutation tests for monophyly and nonmonophyly. Syst. Zool. 40: 366–375.Google Scholar
  37. Farris, J. S. (1986). On the boundaries of phylogenetic systematics. Cladistics 2: 14–27.Google Scholar
  38. Felsenstein, J. (1978). Cases in which parsimony or compatibility will be positively misleading. Syst. Zool. 27: 401–410.Google Scholar
  39. Felsenstein, J. (1983). Parsimony in systematics: biological and statistical issues. Annu. Rev. Ecol. Syst. 14: 313–333.Google Scholar
  40. Felsenstein, J., and Sober, E. (1986). Parsimony and likelihood: An exchange. Syst. Zool. 35: 617–626.Google Scholar
  41. Filan, S. L., (1990). Myology of the head and neck of the bandicoot (Marsupialia: Peramelemorphia). Aust. J. Zool. 38: 617–634.Google Scholar
  42. Flannery, T. F. (1989). Origins of the Australo-Pacific land mammal fauna. Aust. Zool. Rev. 1: 15–24.Google Scholar
  43. Flannery, T. F. (1995). Mammals of New Guinea, Reed Books, Sydney.Google Scholar
  44. Fleischer, G. (1978). Evolutionary principles of the mammalian middle ear. Adv. Anat. Embryol. Cell Biol. 55: 1–69.Google Scholar
  45. Flower, W. H. (1867). On the development and succession of teeth in the Marsupialia. Phil. Trans. Roy. Soc. London 157: 631–641.Google Scholar
  46. Friday, A. E. (1982). Parsimony, simplicity and what actually happened. Zool. J. Linn. Soc. 74: 329–335.Google Scholar
  47. Gaudin, T. J., Wible, J. R., Hopson, J. A., and Turnbull, W. D. (1996). Reexamination of the morphological evidence for the cohort Epitheria (Mammalia, Eutheria). J. Mammal. Evol. 3: 31–79.Google Scholar
  48. Godthelp, H., and Archer, M. (1995). A new primitive marsupicarnivore, from the early Eocene Tingamarra local fauna of Murgon, southeastern Queensland. In: Abstracts of the 5th Conference on Australian Vertebrate Evolution, Palaeontology and Systematics, Canberra, p. 9.Google Scholar
  49. Godthelp, H., Archer, M., Cifelli, R., Hand, S. J., and Gilkeson, C. F. (1992). Earliest known Australian Tertiary mammal fauna. Nature 356: 514–516.Google Scholar
  50. Goin, F. J. (1993). Living South American opossums are not living fossils. In: Abstracts of the Sixth International Theriological Conference, Sydney, p. 112.Google Scholar
  51. Greenwood, D. R. (1994). Palaeobotanical evidence for Tertiary climates. In: History of the Australian Vegetation, R. S. Hill, ed., pp. 44–59, Cambridge University Press, Cambridge.Google Scholar
  52. Gregory, W. K. (1910). The orders of mammals. Bull. Am. Mus. Nat. Hist. 27: 1–524.Google Scholar
  53. Griffiths, M. (1978). The Biology of the Monotremes, Academic Press, New York.Google Scholar
  54. Hall, L. S. (1987). Syndactyly in marsupials—problems and prophecies. In: Possums and Opossums: Studies in Evolution, M. Archer, ed., pp. 245–255, Surrey-Beatty and Sons and Roy. Zool. Soc. N.S.W., Sydney.Google Scholar
  55. Hand, S., Novacek, M., Godthelp, H., and Archer, M. (1994). First Eocene bat from Australia. J. Vert. Paleo. 14: 375–381.Google Scholar
  56. Harvey, P. H., and Pagel, M. D. (1991). The Comparative Method in Evolutionary Biology, Oxford University Press, Oxford.Google Scholar
  57. Heard, S. B., and Hauser, D. L. (1995). Key evolutionary innovations and their ecological mechanisms. Hist. Biol. 10: 151–173.Google Scholar
  58. Hecht, M. K., and Hecht, B. M. (1994). Conflicting developmental and paleontological data: The case of the bird manus. Acta Palaeontol. Polonica 38: 329–338.Google Scholar
  59. Hershkovitz, P. (1992a). Ankle bones: The Chilean opossum Dromiciops gliroides Thomas, and marsupial phylogeny. Bonn. Zool. Beitr. 43: 181–213.Google Scholar
  60. Hershkovitz, P. (1992b). The South American gracile mouse opossums, genus Gracilinanus Gardener and Creighton, 1989 (Marmosidae, Marsupialia): A taxonomic review with notes on general morphology and relationships. Fieldiana (Zool.) 70: 1–56.Google Scholar
  61. Hiiemae, K. M. (1978). Mammalian mastication: A review of the activity of the jaw muscles and the movements they produce in chewing. In: Development, Function and Evolution of Teeth, P. M. Butler and K. A. Josey eds., pp. 359–397, Academic Press, London.Google Scholar
  62. Hume, I. D. (1982). Digestive Physiology and Nutrition of Marsupials, Cambridge University Press, Cambridge.Google Scholar
  63. Kirsch, J. A. W. (1977). The comparative serology of Marsupialia. Aust. J. Zool. Suppl. Ser. 52: 1–152.Google Scholar
  64. Kirsch, J. A. W. (1982). The builder and the bricks: notes toward a philosophy of characters. In: Carnivorous Marsupials, M. Archer, ed., pp. 587–594, Roy. Zool. Soc. N.S.W., Sydney.Google Scholar
  65. Kirsch, J. A. W., and Archer, M. (1982) Polythetic cladistics, or, when parsimony's not enough: The relationships of carnivorous marsupials. In: Carnivorous Marsupials, M. Archer, ed., pp. 595–619, Roy. Zool. Soc. N.S.W., Sydney.Google Scholar
  66. Kirsch, J. A. W., and Springer, M. S. (1993). Timing of the molecular evolution of New Guinean marsupials. Sci. New Guinea 19: 147–156.Google Scholar
  67. Kirsch, J. A. W., Krajewski, C., Springer, M. S., and Archer, M. (1990). DNA-DNA hybridisation studies of carnivorous marsupials II. Relationships among dasyurids (Marsupialia: Dasyuridae). Aust. J. Zool. 38: 637–696.Google Scholar
  68. Kirsch, J. A. W., Dickerman, A. W., Reig, O. A., and Springer, M. S. (1991). DNA hybridization evidence for the Australian affinity of the American marsupial Dromiciops australis. Proc. Natl. Acad. Sci. U.S.A. 88: 10465–10469.Google Scholar
  69. Kitchener, D. J., and Caputi, N. (1988). A new species of false antechnius (Marsupialia: Dasyuridae) from Western Australia, with remarks on the generic classification within the Parantechini. Rec. West. Aust. Mus. 14: 35–59.Google Scholar
  70. Kitchener, D. J., Stoddart, J., and Henry, J. (1984). A taxonomic revision of the Sminthopsis murina complex (Marsupialia, Dasyuridae). Rec. West. Aust. Mus. 11: 201–248.Google Scholar
  71. Kitching, I. J. (1993). The determination of character polarity. In: Cladistics: A Practical Course in Systematics, P. L. Forey, C. J. Humphries, I. L. Kitching, R. W. Scotland, D. J. Siebert, and D. M. Williams, eds., pp. 22–43, Clarendon Press, Oxford.Google Scholar
  72. Kluge, A. G., and Farris, J. S. (1969). Quantitative phyletics and the evolution of anurans. Syst. Zool. 18: 1–32.Google Scholar
  73. Krajewski, C., Driskell, A., Baverstock, P. R., and Braun, M. J. (1992). Phylogenetic relationships of the thylacine (Mammalia: Thylacinidae) among dasyuroid marsupials: Evidence from cytochrome b DNA sequences. Proc. Roy. Soc. London 250: 19–27.Google Scholar
  74. Krajewski, C., Painter, J., Driskell, A. C., Buckley, L., and Westerman, M. (1993). Molecular systematics of New Guinean dasyurids (Marsupialia: Dasyuridae). Sci. New Guinea 19: 157–166.Google Scholar
  75. Krajewski, C., Painter, J., Buckley, L., and Westerman, M. (1994). Phylogenetic structure of the marsupial family Dasyuridae. J. Mammal. Evol. 2: 25–35.Google Scholar
  76. Krajewski, C., Buckley, L., Woolley, P. A., and Westerman, M. (1996). Phylogenetic analysis of cytochrome b sequences in the dasyurid marsupial subfamily Phascogalinae: Systematics and the evolution of reproductive strategies. J. Mammal. Evol. 3: 81–91.Google Scholar
  77. Krauss, F. (1988). An empirical evaluation of the use of the ontogeny polarization criterion in phylogenetic inference. Syst. Zool. 37: 106–141.Google Scholar
  78. Kuhner, M. K., and Felsenstein, J. (1994). A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. Mol. Biol. Evol. 11(3): 459–468.Google Scholar
  79. Legendre, S., and Roth, C. (1988). Correlation of carnassial tooth size and body weight in recent carnivores (Mammalia). Hist. Biol. 1: 85–98.Google Scholar
  80. Lipscombe, D. L. (1992). Parsimony, homology, and the analysis of multistate characters. Cladistics 8: 45–65.Google Scholar
  81. Lowenstein, J. M., Sarich, V. M., and Richardson, B. J. (1981). Albumin systematics of the extinct mammoth and Tasmanian wolf. Nature 291: 409–411.Google Scholar
  82. Luckett, W. P. (1993). An ontogenetic assessment of dental homologies in therian mammals. In: Mammal Phylogeny; Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians and, Marsupials, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 182–204, Springer-Verlag, New York.Google Scholar
  83. Luckett, W. P. (1994). Suprafamilial relationships within Marsupialia: Resolution and discordance from multidisciplinary data. J. Mammal. Evol. 2: 255–283.Google Scholar
  84. MacIntyre, G. T. (1966). Foramen pseudovale and quasi-mammals. Evolution 21: 834–841.Google Scholar
  85. Macphail, M. K. (1996). Neogene environments in Australia. 1. Re-evaluation of microfloras associated with important early Pliocene marsupial remains at Grange Burn, southwestern Victoria. Rev. Palaeo. Palyn. 92: 307–328.Google Scholar
  86. MacPhee, R. E. (1981). Auditory region of primates and eutherian insectivores. Morphology, ontogeny and character analysis. Contrib. Primatol. 18: 1–282.Google Scholar
  87. Marshall, L. G. (1977a). Cladistic analysis of borhyaenoid, dasyuroid, didelphoid, and thylacinid (Marsupialia: Mammalia) affinity. Syst. Zool. 26: 410–425.Google Scholar
  88. Marshall, L. G. (1997b). Lestodelphys halli. Mammal. Spec. 81: 1–3.Google Scholar
  89. Marshall, L. G. (1979). Evolution of metatherian and eutherian (mammalian) characters: A review based on cladistic methodology. Zool. J. Linn. Soc. 66: 369–410.Google Scholar
  90. Marshall, L. G. (1981). Review of the Hathlyacyninae, an extinct subfamily of South American “dog-like” marsupials. Fieldiana (Geol.) 7: 1–120.Google Scholar
  91. Marshall, L. G. (1987). Systematics of Itaboraian (middle Paleocene) age “opossum-like” marsupials from the limestone Quarry at São José de Itaboraí, Brazil. In: Possums and Opossums: Studies in Evolution, M. Archer, ed., pp. 91–160, Surrey Beatty and Sons, Sydney.Google Scholar
  92. Marshall, L. G., and Muizon, C. de (1988). The dawn of the age of mammals in South America. Nat. Geogr. Res. 4: 23–55.Google Scholar
  93. Marshall, L. G., and Muizon, C. de (1995). Pucadelphys andinus (Marsupialia, Mammalia) from the early Paleocene of Bolivia. Part II. The skull. Mém. Mus. Natl. Hist. Nat. 165: 21–90.Google Scholar
  94. Marshall, L. G., Case, J. A., and Woodburne, M. O. (1990). Phylogenetic relationships of the families of marsupials. In: Current Mammalogy, H. H. Genoways, ed., pp. 433–505, Plenum Press, New York.Google Scholar
  95. Martin, H. A., and McMinn, A. (1994). Late Cainozoic vegetation history of northwestern Australia, from the palynology of a deep sea core (ODP site 765). Aust. J. Bot. 42: 95–102.Google Scholar
  96. McKenna, M. C. (1987). Molecular and morphological analysis of high level mammalian interrelationships. In: Molecules and Morphology in Evolution, C. Patterson, ed., pp. 55–92, Cambridge University Press, Cambridge.Google Scholar
  97. Mellet, J. S. (1984). Autocclusal mechanisms in the carnivore dentition. Aust. Mammal. 8: 233–238.Google Scholar
  98. Miller, M. E., Christensen, G. C., and Evans, H. E. (1964). Anatomy of the Dog, W. B. Saunders, Philadelphia.Google Scholar
  99. Mishler, B. D. (1994). Cladistic analysis of molecular and morphological data. Am. J. Phys. Anthropol. 94: 143–156.Google Scholar
  100. Mitchell, P. C. (1905). On the intestinal tract of mammals. Trans. Zool. Soc. London 17: 437–537.Google Scholar
  101. Miyazaki, J. M., and Mickevich, M. F. (1982). Evolution of Chesapecten (Mollusca: Bivalva, Miocene-Pliocene) and the biogenetic law. Evol. Biol. 15: 369–410.Google Scholar
  102. Moore, J., and Gibson, R. (1993). Methods for classifying nemerteans: an assessment. Hydrobiologica 266: 89–101.Google Scholar
  103. Moore, S. J., and Sanson, G. D. (1995). A comparison of the molar efficiency of two insect-eating mammals. J. Zool. London 235: 175–192.Google Scholar
  104. Muirhead, J. (1992). A specialized thylacinid, Thylacinus macknessi (Marsupialia: Thylacinidae), from Miocene deposits of Riversleigh, northwestern Queensland. Aust. Mammal. 15: 67–76.Google Scholar
  105. Muirhead, J. (1994). Systematics, Evolution and Palaeobiology of Recent and Fossil Bandicoots (Peramelemorphia, Marsupialia), Ph.D. dissertation, University of New South Wales, Sydney.Google Scholar
  106. Muirhead, J. (1997). Two new thylacines (Marsupialia: Thylacinidae) from the early to middle Miocene sediments of Riversleigh, northwestern Queensland and a revision the family Thylacinidae. Mem. Old. Mus. (in press).Google Scholar
  107. Muirhead, J., and Archer, M. (1990). Ninbacinus dicksoni, a plesiomorphic thylacine (Marsupialia: Thylacinidae) from Tertiary deposits of Queensland and the Northern Territory. Mem. Old. Mus. 28: 203–221.Google Scholar
  108. Muirhead, J., and Filan, S. I. (1995). Yarala burchfieldi, a plesiomorphic bandicoot (Marsupialia, Peramelemorphia) from Oligo-Miocene deposits of Riversleigh, northwestern Queensland. J. Paleontol. 69: 127–134.Google Scholar
  109. Muirhead, J., and Gillespie, A. (1995). Additional parts of the type specimen of Thylacinus macknessi (Marsupialia: Thylacinidae) from Miocene deposits of Riversleigh, northwestern Queensland. Aust. Mammal. 18: 55–60.Google Scholar
  110. Muizon, C. de (1991). La fauna de mamiferos de Tiupampa (Paleoceno Inferior, Formacion Santa Lucia), Bolivia. In: Fossils y Facies de Bolivia—Vol. I Vertebrados, R. Suarez-Soruco, ed., pp. 575–624, Revista Technica de YPFB, Santa Cruz, Bolivia.Google Scholar
  111. Muizon, C. de (1994). A new carnivorous marsupial from the Palaeocene of Bolivia and the problem of marsupial monophyly. Nature 370: 208–211.Google Scholar
  112. Nixon, K. C., and Carpenter, J. M. (1993). On outgroups. Cladistics 9: 413–426.Google Scholar
  113. Norris, C. A. (1993). Changes in the composition of the auditory bulla in southern Solomon Islands populations of the Grey Cuscus, Phalanger orientalis breviceps (Marsupialia, Phalangeridae). Zool. J. Linn. Soc. 107: 93–106.Google Scholar
  114. Novacek, M. J. (1977). Aspects of the problem of variation, origin, and evolution of the eutherian auditory bulla. Mammal Rev. 7: 131–149.Google Scholar
  115. Novacek, M. J., and Wyss, A. R. (1986). Higher-level relationships of the Recent eutherian orders: Morphological evidence. Cladistics 2: 257–287.Google Scholar
  116. Novacek, M. J., Wyss, A. R., and McKenna, M. C. (1988). The major groups of eutherian mammals. In: The Phylogeny and Classification of Tetrapods, Vol. 2. Mammals, M. J. Benton, ed., pp. 31–71, Clarendon Press, Oxford.Google Scholar
  117. Owen, R. (1838). Report on fossils from Wellington Caves. In: Three Expeditions into the Interior of Eastern Australia with Descriptions of the Recently Explored Region of Australia Felix, and of the Present Colony of New South Wales, T. L. Mitchell, ed., pp. 359–366, W. Boone, London.Google Scholar
  118. Painter, J., Krajewski, C., and Westerman, M. (1995). Molecular phylogeny of the marsupial genus Planigale (Dasyuridae). J. Mammal. 76: 406–413.Google Scholar
  119. Patterson, B. (1965). The auditory region of the borhyaenid marsupial Cladosictis. Brevoria 217: 1–9.Google Scholar
  120. Presley, R., and Steel, F. L. D. (1976). On the homology of the alisphenoid. J. Anat. 121: 441–459.Google Scholar
  121. Reig, O. A., and Simpson, G. G. (1972). Sparassocynus (Marsupialia, Didelphidae), a peculiar mammal from the Late Cenozoic of Argentina. J. Zool. London 167: 511–539.Google Scholar
  122. Reig, O. A., Kirsch, J. A. W., and Marshall, L. G. (1987). Systematic relationships of the living and Neocenozoic American “opossum-like” marsupials (suborder Didelphimorphia), with comments on the classification of these and of the Cretaceous and Paleogene New World and European metatherians. In: Possums and Opossums: Studies in Evolution, M. Archer, ed., pp. 1–89, Surrey Beatty and Sons, Sydney.Google Scholar
  123. Retief, J. D., Krajewski, C., Westerman, M., Winkfien, R. J., and Dixon, G. H. (1995). Molecular phylogeny and evolution of marsupial protoamine P1 genes. Proc. Roy. Soc. London 259: 7–14.Google Scholar
  124. Ride, W. D. L. (1962). On the evolution of Australian marsupials. In: The Evolution of Living Organisms, G. W. Leeper, ed., pp. 281–305, Melbourne University, Melbourne.Google Scholar
  125. Ride, W. D. L. (1964a). A review of Australian fossil marsupials. J. Roy. Soc. W. Aust. 47: 97–131.Google Scholar
  126. Ride, W. D. L. (1964b). Antechinus rosamondae, a new species of dasyurid marsupial from the Pilbara district of Western Australia; with remarks on the classification of Antechinus. W. Aust. Nat. 9: 58–65.Google Scholar
  127. Rosenburg, H. I., and Richardson, K. C. (1995). Cephalic morphology of the honey possum, Tarsipes rostratus (Marsupialia: Tarsipedidae); an obligate nectarivore. J. Morphol. 223: 303–323.Google Scholar
  128. Russell, A. P., Bryant, H. N., Powell, G. L., and Laroiya, R. (1995). Scaling relationships within the maxillary tooth row of the Felidae, and the absence of the second upper premolar in Lynx. J. Zool. London 236: 161–182.Google Scholar
  129. Saether, O. A. (1983). The canalized evolutionary potential: Inconsistencies in phylogenetic reasoning. Syst. Zool. 32: 343–359.Google Scholar
  130. Saether, O. A. (1986). The myth of objectivity—post Hennigan deviations. Cladistics 2: 1–13.Google Scholar
  131. Simmons, N. B. (1993). The importance of methods: archontan phylogeny and cladistic analysis of morphological data. In: Primates and Their Relatives in Phylogenetic Perspective, R. D. E. MacPhee, ed., pp. 1–61, Plenum Press, New York.Google Scholar
  132. Simpson, G. G. (1941). The affinities of the Borhyaenidae. Am. Mus. Novitates 1118: 1–6.Google Scholar
  133. Sober, E. (1983). Parsimony in systematics: Philosophical issues. Annu. Rev. Ecol. Syst. 14: 335–357.Google Scholar
  134. Sober, E. (1986). Parsimony and character weighting. Cladistics 2: 28–42.Google Scholar
  135. Sober, E. (1989). Reconstructing the Past: Parsimony, Evolution and Inference, MIT Press, Cambridge, MA.Google Scholar
  136. Springer, M. S., Westerman, M., and Kirsch, J. A. W. (1994). Relationships among orders and families of marsupials based on 12S ribosomal DNA sequences and the timing of the marsupial radiation. J. Mammal. Evol. 2: 85–115.Google Scholar
  137. Stewart, C. (1993). The powers and pitfalls of parsimony. Nature 361: 603–607.Google Scholar
  138. Stirton, R. A. (1957). Tertiary marsupials from Victoria, Australia. Mem. Nat. Mus. Victoria 21: 121–134.Google Scholar
  139. Strahan, R. (ed.). (1995). The Mammals of Australia, Reed Books, Sydney.Google Scholar
  140. Sundberg, P., and Svensson, M. (1994). Homoplasy, character function, and nemertean systematics. J. Zool. London 234: 253–263.Google Scholar
  141. Swofford, D. L, and Maddison, W. P. (1992). Parsimony, character-state reconstructions, and evolutionary inferences. In: Systematics, Historical Ecology, and North American Freshwater Fishes, R. L. Mayden, ed., pp. 186–223, Stanford University Press, Stanford, CA.Google Scholar
  142. Szalay, F. S. (1982). A new appraisal of marsupial phylogeny and classification. In: Carnivorous Marsupials, M. Archer, ed., pp. 621–640, Roy. Zool. Soc. N.S.W., Mosman.Google Scholar
  143. Szalay, F. S. (1985). Rodent and lagomorph morphotype adaptations, origins, and relationships: Some postcranial attributes analyzed. In: Evolutionary Relationships Among Rodents: A Multidisciplinary Analysis, W. P. Luckett and J.-L. Hartenberger, eds., pp. 83–132, Plenum Press, New York.Google Scholar
  144. Szalay, F. S. (1993). Metatherian taxon phylogeny: Evidence and interpretation from the cranioskeletal system. In: Mammal Phylogeny; Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians and Marsupials, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 216–242, Springer-Verlag, New York.Google Scholar
  145. Szalay, F. S. (1994). Evolutionary History of the Marsupials and an Analysis of Osteological Characters, Cambridge University Press, New York.Google Scholar
  146. Tate, G. H. H. (1947). Results of the Archbold expeditions, no. 56: On the anatomy and classification of the Dasyuridae (Marsupialia). Bull. Am. Mus. Nat. Hist. 88: 101–153.Google Scholar
  147. Thomas, O. (1888). Catalogue of the Marsupialia and Monotremata in the Collection of the British Museum (Nat. Hist.), London.Google Scholar
  148. Thomas, R. H., Schaffner, W., Wilson, A. C., and Paabo, S. (1989). DNA phylogeny of the extinct marsupial wolf. Nature 340: 465–467.Google Scholar
  149. Trofimov, B. A., and Szalay, F. S. (1994). New Cretaceous marsupial from Mongolia and the early radiation of Metatheria. Proc. Natl. Acad. Sci. USA 91: 12569–12573.Google Scholar
  150. Turnbull, W. D. (1970). Mammalian masticatory apparatus. Fieldiana (Geol.) 18: 1–339.Google Scholar
  151. Van Dyck, S. V. (1987). The bronze quoll, Dasyurus spartacus (Marsupialia: Dasyuridae), a new species from the savannahs of Papua New Guinea. Aust. Mammal. 11: 145–156.Google Scholar
  152. Van Dyck, S. V. (1989). Biting remarks on the Riversleigh Antechinus. Riversleigh Notes 7: 2–3.Google Scholar
  153. Van Dyck, S. V., Woinarski, J. C. Z., and Press, A. J. (1994). The Kakadu dunnart, Sminthopsis bindi (Marsupialia: Dasyuridae), a new species from the stony woodlands of the Northern Territory. Mem. Qld. Mus. 37: 311–323.Google Scholar
  154. Webster, D. B. (1966). Ear structure and function in modern mammals. Am. Zool. 6: 451–466.Google Scholar
  155. Webster, D. B., and Webster, M. (1975). Auditory systems of Heteromyidae: functional morphology and evolution of the middle ear. J. Morphol. 146: 343–376.Google Scholar
  156. Webster, D. B., and Webster, M. (1980). Morphological adaptations of the ear in the rodent family Heteromyidae. Am. Zool. 20: 247–254.Google Scholar
  157. Westerman, M., and Woolley, P. A. (1990). Cytogenetics of some New Guinean dasyurids and genome evolution in the Dasyuridae (Marsupialia). Aust. J. Zool. 37: 521–531.Google Scholar
  158. Westerman, M., and Woolley, P. A. (1993). Chromosomes and the evolution of dasyurid marsupials: An overview. Sci. New Guinea 19: 123–130.Google Scholar
  159. Wheeler, Q. D. (1990). Ontogeny and character phylogeny. Cladistics 6: 225–268.Google Scholar
  160. Wible, J. R. (1990). Petrosals of late Cretaceous marsupials from North America, and a cladistic analysis of the petrosal in therian mammals. J. Vert. Paleontol. 10: 183–205.Google Scholar
  161. Wilkinson, M., and Benton, M. J. (1995). Missing data and rhynchosaur phylogeny. Hist. Biol. 10: 137–150.Google Scholar
  162. Williams, D. M., Scotland, R. W., and Blackmore, S. (1990). Is there a direct ontogenetic criterion in systematics? Biol. J. Linn. Soc. 39: 99–108.Google Scholar
  163. Wilson-Pauwels, L., Akesson, E. J., and Stewart, P. A. (1988). Cranial Nerves, B. C. Decker, Toronto.Google Scholar
  164. Woodburne, M. O. (1967). The Alcoota fauna, central Australia: An integrated palaeontological and geological study. Bureau Min. Resource. Aust. Bull. 87: 1–187.Google Scholar
  165. Woodburne, M. O., MacFadden, B. J., Case, J. A., Springer, M. S., Pledge, N. S., Power, J. D., Woodburne, J. M., and Springer, K. B. (1993). Land mammal biostratigraphy and magnetostratigraphy of the Etadunna Formation (Late Oligocene) of South Australia. J. Vert. Paleontol. 13: 483–515.Google Scholar
  166. Wroe, S. (1995). Two new species of dasyuromorphian from the Oligo-Miocene of Riversleigh, northwestern Queensland and problems with family level distinction. In: Abstracts of the 5th Conference on Australian Vertebrate Evolution, Palaeontology and Systematics, Canberra, p. 25.Google Scholar
  167. Wroe, S. (1997). Mayigriphus orbus, a new species of dasyuromorphian (Marsupialia) from Miocene deposits of Riversleigh, northwestern Queensland. Mem. Qld. Mus. (in press).Google Scholar
  168. Wroe, S. (1996) Muribacinus gadiyuli, (Thylacinidae, Marsupialia), a new and very plesiomorphic thylacinid from the Miocene of Riversleigh, Northwestern Queensland and the problem of paraphyly for the Dasyuridae (Marsupialia). J. Paleontol. 70: 1032–1044.Google Scholar
  169. Young, W. G., Jupp, R., and Kruger, B. J. (1989). Evolution of the Skull, Jaws, and Teeth in Vertebrates, University of Queensland Press, Brisbane.Google Scholar
  170. Zeller, U. (1987). Morphogenesis of the mammalian skull with special reference to Tupaia. In: Morphogenesis of the Mammalian Skull, H. Kuhn and U. Zeller, eds., pp. 17–50, Verlag Paul Parey, Hamburg.Google Scholar
  171. Zeller, U. (1989). Die Entwicklung und Morphologie des Schadels von Ornithorhynchus anatinus (Mammalia: Prototheria: Monotremata). Abh. Senckenberg. Naturforsch. Ges. 545: 1–88.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Stephen Wroe
    • 1
  1. 1.Palaeontology Laboratory, School of Biological SciencesUniversity of New South WalesSydneyAustralia

Personalised recommendations