Theoretical and Mathematical Physics

, Volume 137, Issue 2, pp 1550–1560 | Cite as

Separation of Variables in Multi-Hamiltonian Systems: An Application to the Lagrange Top

  • C. Morosi
  • G. Tondo


Starting from the tri-Hamiltonian formulation of the Lagrange top in a six-dimensional phase space, we discuss the reduction of the vector field and of the Poisson tensors. We show explicitly that after the reduction to each symplectic leaf, the vector field of the Lagrange top is separable in the Hamilton–Jacobi sense.

Lagrange top Hamiltonian formulation separability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Morosi and G. Tondo, J. Phys. A, 35, 1741-1750 (2002).Google Scholar
  2. 2.
    G. Tondo, J. Phys. A, 28, 5097-5115 (1995); G. Falqui, F. Magri, and G. Tondo, Theor. Math. Phys., 122, 176-192 (2000); G. Falqui, F. Magri, M. Pedroni, and G. Zubelli, Regul. Chaotic Dyn., 5, 33-52 (2000).Google Scholar
  3. 3.
    F. Magri and C. Morosi, “A geometrical characterization of integrable Hamiltonian systems through the theory of Poisson-Nijenhuis manifolds,” Quaderno 19/S, Dip. Mat., Universitá di Milano, Milan (1984).Google Scholar
  4. 4.
    R. Caboz, V. Ravoson, and L. Gavrilov, J. Phys. A, 24, L523-L525 (1991); R. Brouzet, R. Caboz, J. Rabenivo, and V. Ravoson, J. Phys. A, 29, 2069-2075 (1996).Google Scholar
  5. 5.
    C. Morosi and G. Tondo, J. Phys. A, 30, 2799-2806 (1997).Google Scholar
  6. 6.
    G. Tondo and C. Morosi, Rep. Math. Phys., 44, 255-266 (1999).Google Scholar
  7. 7.
    F. Magri and T. Marsico, “Some developments of the concept of Poisson manifolds in the sense of A. Lichnerowitz,” in: Gravitation, Electromagnetism, and Geometric Structures (G. Ferrarese, ed.), Pitagora, Bologna (1996), pp. 207-222.Google Scholar
  8. 8.
    E. K. Sklyanin, Progr. Theoret. Phys. (Suppl.), 118, 35-60 (1995).Google Scholar
  9. 9.
    S. Benenti, J. Math. Phys., 38, 6578-6602 (1997).Google Scholar
  10. 10.
    L. Gavrilov and A. Zhivkov, Enseign. Math., 44, 133-170 (1998).Google Scholar
  11. 11.
    T. Ratiu, Amer. J. Math., 104, 409-448 (1982).Google Scholar
  12. 12.
    C. Médan, Phys. Lett. A, 215, 176-180 (1996).Google Scholar
  13. 13.
    G. Magnano, Acc. Sc. Torino-Mem. Sc. Fis., 19, 20, 159-209 (1995, 1996).Google Scholar
  14. 14.
    I. M. Gel'fand and I. S. Zakharevich, Selecta Math., n.s., 6, 131-183 (2000).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • C. Morosi
    • 1
  • G. Tondo
    • 2
  1. 1.Dipartimento di MatematicaPolitecnico di MilanoMilanItaly
  2. 2.Dipartimento di Scienze MatematicheUniversità di TriesteTriesteItaly

Personalised recommendations