Skip to main content
Log in

A new method for estimating the importance of hydrogen-bonding groups in the binding site of a protein

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

We introduce a new method to estimate the importance of hydrogen-bonding sitepoints in the binding site of a protein as part of a structure-based design strategy. Our method identifies hydrogen-bonding sitepoints within a binding pocket and ranks them according to both the accessibility of their hydrogen bonding regions to incoming ligands and their hydrogen-bonding strength. The combination of these components produces a prioritised list of sitepoints that are more likely to be involved in hydrogen bonding with an incoming ligand. A dataset of known protein-ligand interactions was used to compare the prioritisation of sitepoints identified by our method with those observed to be engaged in hydrogen bonding in their crystal structures. Our method was able to remove those sitepoints unable to bind the ligand due to a low accessibility or an unfavourable orientation and to award significantly higher hydrogen-bonding ranking values to those sitepoints observed to form hydrogen bonds. Our method can thus be used to identify hydrogen-bonding sitepoints that should be targeted preferentially in a drug design strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goodford, P.J., J. Med. Chem., 28 (1985) 849.

    Google Scholar 

  2. Kuntz, I.D., Science, 257 (1992) 1078.

    Google Scholar 

  3. Bohm, H.J., J. Comput.-Aided Mol. Des., 6 (1992) 593.

    Google Scholar 

  4. Gillet, V.J., Johnson, A.P., Mata, P., Sik, S. and Williams, P., J. Comput.-Aided Mol. Des., 7 (1993) 127.

    Google Scholar 

  5. Miranker, A. and Karplus, M., Proteins: Struct., Func. and Genetics, 11 (1991) 314.

    Google Scholar 

  6. Glen, R.C. and Payne, A.W.R., J. Comput.-Aided Mol. Des., 9 (1995) 181.

    Google Scholar 

  7. Pearlman, D.A. and Murcko, M.A., J. Med. Chem., 39 (1996) 1651.

    Google Scholar 

  8. Lewis, R.A. and Leach, A.R., J. Comput.-Aided Mol. Des., 8 (1994) 467.

    Google Scholar 

  9. Lauri, G. and Bartlett, P.A., J. Comput-Aided Mol. Des., 8 (1994) 51–66.

    Google Scholar 

  10. Moon, J.B. and Howe, W.J., Proteins: Struct., Func. and Genetics, 11 (1991) 29.

    Google Scholar 

  11. Todorov, N.P. and Dean, P.M., J. Comput.-Aided Mol. Des., 11 (1997) 175.

    Google Scholar 

  12. Jeffrey, G.A. and Saenger, W., Hydrogen Bonding in Biological Structures, Springer-Verlag, Berlin, 1991.

    Google Scholar 

  13. Dean, P.M., In Dean, P.M. (Ed.), Molecular Similarity in Drug Design, Blackie A & P, UK, 1995, pp. 7–8.

    Google Scholar 

  14. Fujita, T., Nishioka, T. and Nakajima, M., J. Med. Chem., 20 (1977) 1071.

    Google Scholar 

  15. Wilson, L.Y. and Famini, G.R., J. Med. Chem., 34 (1991) 1668.

    Google Scholar 

  16. Dearden, J.C. and Ghafourian, T., J. Chem. Inf. Comput. Sci., 39 (1999) 231.

    Google Scholar 

  17. Dearden, J.C. and Ghafourian, T., In Sanz, F., Giraldo, J. and Manaut, F. (Eds.), QSAR and Molecular Modelling: Concepts, Computational Tools and Biological Applications, Prous Science Publishers, Barcelona, 1995, pp. 117–119.

    Google Scholar 

  18. Gancia, E., Montana, J.G. and Manallack, D.T., J.Mol. Graph. Mod., 19 (2001) 349.

    Google Scholar 

  19. Raevsky, O.A., J. Phys. Org. Chem., 10 (1997) 405.

    Google Scholar 

  20. Raevsky, O.A., Newsletter of QSAR and Modelling Society, 7 (1996) 16.

    Google Scholar 

  21. Abraham, M.H., Duce, P.P., Prior, D.V., Barrat, D.G., Morris, J.J. and Taylor, P.J., J. Chem. Soc. Perkin Trans., 2 (1989) 1355.

    Google Scholar 

  22. Bruno, I.J., Cole, J.C., Lommerse, J.P.M., Rowland, R.S., Taylor, R. and Verdonk, M.L., J. Comput.-Aided Mol. Design, 11 (1997) 525.

    Google Scholar 

  23. Lee, B. and Richards, F.M., J. Mol. Biol., 55 (1971) 379.

    Google Scholar 

  24. Taylor, R., Kennard, O. and Versichel, W., J. Am. Chem. Soc., 105 (1983) 5761.

    Google Scholar 

  25. Mills, J.E.J., Perkins, T.D.J. and Dean, P.M., J. Comput.-Aided Mol. Des., 11 (1997) 229.

    Google Scholar 

  26. Mills, J.E.J. and Dean, P.M., J. Comput.-Aided Mol. Des., 10 (1996) 607.

    Google Scholar 

  27. Walters, M. and Stahl, M., BABEL version 1.6; Copyright (C) 1992, 1993, 1994. http://smog.com/chem/babel.

  28. Mills, J.E.J. (1995) Analysis of hydrogen-bond data applied to drug-design strategies, Doctoral Dissertation, University of Cambridge, Cambridge, U.K., 1995.

    Google Scholar 

  29. Hubbard, S.J. and Thornton, J.M., NACCESS V2.1.1, http://wolf.bms.umist.ac.uk/naccess.

  30. Allen, F.H., Bird, C.M., Rowland, R.S. and Raithby, P.R., Acta Cryst., B53 (1997) 680.

    Google Scholar 

  31. Allen, F.H., Bird, C.M., Rowland, R.S. and Raithby, P.R., Acta Cryst., B53 (1997) 696.

    Google Scholar 

  32. Casari, G. and Sippl, M.J., J. Mol. Biol., 224 (1992) 725.

    Google Scholar 

  33. Islam, S.A. and Weaver, D.L., Proteins, 8 (1990) 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, M.D., Mancera, R.L. A new method for estimating the importance of hydrogen-bonding groups in the binding site of a protein. J Comput Aided Mol Des 17, 401–414 (2003). https://doi.org/10.1023/A:1027346709963

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027346709963

Navigation