Skip to main content
Log in

Neurochemical Changes in Cerebellum of Goldfish Exposed to Various Temperatures

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Acclimation of goldfish at 35°C increased the cerebellar content of aspartate, glutamate, and taurine and [3H]glutamate uptake. Acclimation at 4°C increased the levels of glutamine, serine, and alanine and glutamine synthetase (GS) activity. Adenosine content increased in cerebellum of fish acclimated to warm temperature. K+-evoked release of endogenous and exogenous glutamate from cerebellar slices increased in fish acclimated at 35°C compared to 4°C. The basal level of cyclic adenosine 3′:5′-monophosphate (cAMP) in perfused cerebellar slices in fish acclimated at 35°C was much higher than in fish acclimated at 5° and 22°C. It is concluded that variations of environmental temperature produces large neurochemical changes in goldfish cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Fry, F. E. J. 1971. The effect of environmental factors on the physiology of fish. Pages 1–98, in Hoar, W. S. and Randall, D. J. (eds.), Fish physiology 4, Environmental relations and behavior, Academic Press, New York.

    Google Scholar 

  2. Shaklee, J. B., Christiansen, J. A., Sidell, B. D., Prosser, C. L., and Whitt, G. S. 1977. Molecular aspects of temperature acclimation in fish: contributions of changes in enzyme activities and isozyme patterns to metabolic reorganisation in the green sunfish. J. Exp. Zool. 201:1–20.

    Google Scholar 

  3. Hilbig, R., Rahmann, H., and Rosner, H. 1979. Brain gangliosides and temperature adaptation in eury-and stenothermic teleost fish (carp and rainbow trout). J. Therm. Biol. 4:29–34.

    Google Scholar 

  4. Greer, G. L., and Gardner, D. R. 1974. Characterization of responses from temperature-sensitive units in trout brain. Comp. Biochem. Physiol. 48A:189–203.

    Google Scholar 

  5. Nelson, D. O., and Prosser, C. L. 1981. The role of nervous system in temperature adaptation of poikilotherms. Ann. Rev. Physiol. 43:281–300.

    Google Scholar 

  6. Driedzic, W., Selivonchick, D. P., and Roots, B. I. 1976. Alk-l-enyl ether-containing lipids of goldfish (Carassius auratus L.): brain and temperature acclimation. Comp. Biochem. Physiol. 53B:311–314.

    Google Scholar 

  7. Cossins, A. R. 1977. Adaptation of biological membranes to temperature. Effect of temperature acclimation of goldfish upon the viscosity of synaptosomal membranes. Biochem. Biophys. Acta 470:395–411.

    Google Scholar 

  8. Peterson, R. H., and Prosser, C. L. 1972. The effects of cooling on responses of goldfish central nervous system. Comp. Biochem. Physiol. 42:1019–1037.

    Google Scholar 

  9. Harper, A. A., Watt, P. W., Hancock, N. A., and Macdonald, A. G. 1990. Temperature acclimation effects on carp nerve: a comparison of nerve conduction, membrane fluidity and lipid composition. J. exp. Biol. 154:305–320.

    Google Scholar 

  10. Matheson, D. F., and Roots, B. I. 1988. Effect of acclimation temperature on the axon and fiber diameter spectra and thickness of myelin of fibers of the optic nerve of goldfish. Exp. Neurol. 101:29–40.

    Google Scholar 

  11. Hebb, C., Stephens, T. C., and Smith, M. W. 1972. Effect of environmental temperature on the kinetic properties of goldfish brain choline acetyltransferase. Biochem. J. 129:1013–1021.

    Google Scholar 

  12. Baslow, M. H. 1967. Temperature adaptation and the central nervous system of fish. Pages 205–226, in Prosser, C. L. (ed), Molecular mechanisms of temperature adaptation, AAAS Publ. 84.

  13. Sebert, P., Barthelemy, L., and Caroff, J. 1985. Serotonin levels in fish brain: effects of hydrostatic pressure and water temperature. Experientia 41:1429–1430.

    Google Scholar 

  14. Crawshaw, L. I. 1979. Responses to rapid temperature change in vertebrate ectotherms. Am. Zool. 19:225–237.

    Google Scholar 

  15. Friedlander, M. J., Kotchabhakdi, N., and Prosser, C. L. 1976. Effects of cold and heat on behavior and cerebellar function in goldfish. J. Comp. Physiol. 112:19–45.

    Google Scholar 

  16. Kotchabhakdi, N. 1976. Functional circuitry of the goldfish cerebellum. J. Comp. Physiol. 112:47–73.

    Google Scholar 

  17. Foster, A. C., and Roberts, P. J. 1980. Endogenous amino acid release from rat cerebellum in vitro. J. Neurochem. 35(2):517–519.

    Google Scholar 

  18. Sandoval, M. E., and Cotman, C. W. 1978. Evaluation of glutamate as a neurotransmitter of cerebellar parallel fibers. Neuroscience 3:199–206.

    Google Scholar 

  19. Levi, G., Gordon, R. D., Gallo, V., Wilkin, G. P., and Balazs, R. 1982. Putative amino acid transmitters in the cerebellum. I. depolarization-induced release. Brain Res. 239:425–445.

    Google Scholar 

  20. McGeer, P. L., Eccles, J. C., and McGeer, E. 1978. Anatomical distribution of GABA pathways in brain. Pages 202–209, in Molecular neurobiology of the mammalian brain, Plenum Press, New York.

    Google Scholar 

  21. Villani, L., Migani, P., Poli, A., Niso, R., and Contestabile, A. 1982. Neurotoxic effect of kainic acid on ultrastructure and GABAergic parameters in the goldfish cerebellum. Neuroscience 7:2515–2524.

    Google Scholar 

  22. Lucchi, R., Poli, A., Traversa, U., and Barnabei, O. 1994. Functional adenosine Al receptors in goldfish brain: regional distribution and inhibition of K+-evoked glutamate release from cerebellar slices. Neuroscience 58:237–243.

    Google Scholar 

  23. Hill, D. W., Walters, F. H., Wilson, T. D., and Stuart, J. D. 1979. High performance liquid chromatographic determination of amino acid in the picomole range. Analyt. Chem. 51:1338–1341.

    Google Scholar 

  24. Cunha, R. A., and Sebastião, A. N. 1993. Separation of adenosine triphosphate and its degradation products in innervated muscle of the frog by reverse phase high-performance liquid chromatography. Chromatographia 28(No 11/12):610–612.

    Google Scholar 

  25. Lowry, O. H., Rosenbroug, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  26. Poli, A., Lucchi, R., Gandolfi, O. and Barnabei, O. 1992. Spontaneous recovery of MPTP-damaged catecholamine systems in goldfish brain areas. Brain Research 585:128–134.

    Google Scholar 

  27. Contestabile, A., Munarini, A., Bissoli, R., Chiodini, O., and Villani, L. 1986. Modification of ultrastructural and neurochemical parameters in synaptosomes of the retino-deprived goldfish optic tectum. Exp. Brain Res. 62:560–566.

    Google Scholar 

  28. Patel, A. J., Hunt, A., and Tahourdin, C. S. M. 1983. Regional development of glutamine synthetase activity in rat brain and its association with the differentiation of astrocytes. Dev. Brain Res. 8:31–37.

    Google Scholar 

  29. Atkinson, D. E. 1968. The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 7:4030–4034.

    Google Scholar 

  30. Brown, B. L., Ekins, R. P., and Albano, J. D. M. 1972. Saturation assay for cyclic AMP using endogenous binding protein. Adv. Cyclic Nucleotide Res. 2:25–40.

    Google Scholar 

  31. Daly, J. W., Padgett, W., and Seamon, K. B. 1982. Activation of cyclic AMP-generating systems in brain membranes and slices by the diterpene forskolin: augmentation of receptor-mediated responses. J. Neurochem. 38:532–544.

    Google Scholar 

  32. Barbeau, A., Inoue, N., Tsukada, Y., and Butterworth, R. F. 1975. Minireview: The neuropharmacology of taurine. Life Sci. 17:669–678.

    Google Scholar 

  33. Okamoto, K., Kimura, H., and Sakai, Y. 1983. Evidence for taurine as an inhibitory neurotransmitter in cerebellar stellate interneurons: selective antagonism by TAG (6-aminomethyl-3-methyl-4H, 1,2,4-benzothiadiazine-1, 1 dioxide). Brain Res. 265:163–168.

    Google Scholar 

  34. Okamoto, K., and Sakai, Y. 1981. Inhibitory actions of taurocyamine, hypotaurine, homotaurine, taurine and GABA on spike discharges of Purkinje cells, and localization of sensitive sites, in guinea-pig cerebellar slices. Brain Research 206:371–386.

    Google Scholar 

  35. McGeer, P. L., and McGeer, E. G. 1989. Amino acid neurotransmitters. Pages 311–332, in Basic Neurochemistry: Molecular, Cellular and Medical Aspects, 4th edn, New York: Raven Press.

    Google Scholar 

  36. Chan-Palay, V., Palay, S. L., and Wu, J. Y. 1979. Gamma-aminobutyric acid pathways in the cerebellum studied by retrograde and anterograde transport of glutamic acid decarboxylase antibody after in vivo injections. Anat. Embryol. 157:1–14.

    Google Scholar 

  37. Storm-Mathisen, J. 1976. Distribution of the components of the GABA system in neuronal tissues, cerebellum and hippocampus-effects of axotomy. Pages 148–168, in Roberts, E., Chase, T. N. and Tower, D. B. (eds), GABA in Nervous tissue function, Raven Press, New York.

    Google Scholar 

  38. Lajtha, A., and Sershen, H. 1975. Changes in the rates of protein synthesis in the brain of goldfish at various temperatures. Life Sciences 17:1861–1868.

    Google Scholar 

  39. Weil-Malherbe, H. and Gordon, G. 1971. Amino acid metabolism and ammonia formation in brain slices. J. Neurochem. 18:1659–1672.

    Google Scholar 

  40. Cooper, A. J. L., Mora, S. N., Cruz, N. F., and Gelbard, A. S. 1985. Cerebral ammonia metabolism in hyperammonemic rats. J. Neurochem. 44:1716–1723.

    Google Scholar 

  41. Cooper, A. J. L., and Plum, F. 1987. Biochemistry and physiology of brain ammonia. Physiol. Rev. 67, 440–519.

    Google Scholar 

  42. Goldberg, A. M., and McCaman, R. E. 1967. A quantitative microchemical study of choline acetyltransferase and acetylcholinesterase in the cerebellum of several species. Life Sci. 6:1493–1500.

    Google Scholar 

  43. Vizi, S. E., and Palkovits, M. 1978. Acetylcholine content in different regions of the rat brain. Brain Res. Bull 3:93–96.

    Google Scholar 

  44. Kan, K. S. K., Chao, L. P., and Eng, L. F. 1978. Immunohistochemical localization of choline acetyltransferase in rabbit spinal cord and cerebellum. Brain Res. 146:221–229.

    Google Scholar 

  45. Finger, T. E. 1978. Cerebellar afferents in teleost catfish (Ictaluridae). J. comp. Neurol. 181:173–182.

    Google Scholar 

  46. Burke, S. P., and Nadler, J. V. 1988. Regulation of glutamate and aspartate release from slices of the hippocampal CA1 area: effects of adenosine and baclofen. J. Neurochem. 51:1541–1551.

    Google Scholar 

  47. Phillis, J. W., Walter, G. A., and Simpson, R. E. 1991. Brain adenosine and transmitter amino acid release from the ischemic rat cerebral cortex: effects of the adenosine deaminase inhibitor deoxycoformycin. J. Neurochem. 56:644–650.

    Google Scholar 

  48. Schmidt, M. J., Thomberry, J. F., and Molloy, B. B. 1977. Effects of kainate and other glutamate analogues on cyclic nucleotide accumulation in slices of rat cerebellum. Brain Research 121:182–189.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poli, A., Notari, S., Virgili, M. et al. Neurochemical Changes in Cerebellum of Goldfish Exposed to Various Temperatures. Neurochem Res 22, 141–149 (1997). https://doi.org/10.1023/A:1027307305595

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027307305595

Navigation