Topics in Catalysis

, Volume 11, Issue 1–4, pp 131–138 | Cite as

Evolution of Ti–Sn-rutile-supported V2O5–WO3 catalyst during its use in nitric oxide reduction by ammonia

  • M. Najbar
  • F. Mizukami
  • A. Białas
  • J. Camra
  • A. Wesełucha-Birczyńska
  • H. Izutsu
  • A. Góra


This paper concerns the relation between surface structure of crystalline vanadia-like active species on vanadia–tungsta catalyst and their activity in the selective reduction of NO by ammonia to nitrogen. The investigations were performed for Ti–Sn-rutile-supported isopropoxy-derived catalyst. The SCR activity and surface species structure were determined for the freshly prepared catalyst, for the catalyst previously used in NO reduction by ammonia (320 ppm NO, 335 ppm NH3 and 2.35 vol% O2) at 573 K as well as for the catalyst previously annealed at 573 K in helium stream containing 2.35 vol% O2. The crystalline islands, exposing main V2O5 surface, with some tungsten atoms substituted for V-ones, were found, with XPS and FT Raman spectroscopy, to be present at the surface of the freshly prepared catalyst. A profound evolution of the active species during the catalyst use at 573 K was observed. Dissociative water adsorption on V5+OW6+ sites is discussed as mainly responsible for the catalyst activity at 473 K and that on both V5+OW6+ and V4+OW6+ sites as determining the activity at 523 K.

rutile supported V2O5–WO3 catalyst evolution NO reduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Bosch and F. Janssen, Catal. Today 2 (1988) 369.CrossRefGoogle Scholar
  2. [2]
    P. Forzatti and L. Lietti, Heter. Chem. Rev. 3 (1996) 33.CrossRefGoogle Scholar
  3. [3]
    G. Busca, L. Lietti, G. Ramis and F. Berti, Appl. Catal. B 18 (1998) 1.CrossRefGoogle Scholar
  4. [4]
    J.P. Chen and R.T. Yang, J. Catal. 125 (1990) 411.CrossRefGoogle Scholar
  5. [5]
    P. Courtine, in: Solid State Chemistry in Catalysis, ACS Symp., Series 279, Vol. 37, eds. R.K. Grasselli and J.F. Brazdil (Am. Chem. Soc., Washington, DC, 1985).Google Scholar
  6. [6]
    H.G. Bachman and W.H. Burnes, Z. Kristallogr. 115 (1961) 215.CrossRefGoogle Scholar
  7. [7]
    K. Tarama, M. Teranishi and S. Yoshida, Bull. Inst. Chem. Res., Kyoto Univ. 46 (1968) 185.Google Scholar
  8. [8]
    M. Coldea, L. Stanescu and I. Ardelean, Phys. Stat. Sol. A 26 (1974) 145.Google Scholar
  9. [9]
    E. Brocławik, A. Góra and M. Najbar, J. Mol. Catal., submitted.Google Scholar
  10. [10]
    M. Najbar, E. Brocławik, A. Góra, A. Białas and A. Wesełucha-Birczyńska, Phys. Chem. Lett., submitted.Google Scholar
  11. [11]
    L. Lietti, I. Nova, E. Tronconi and P. Forzatti, AIChE J. 43 (1997) 2559.CrossRefGoogle Scholar
  12. [12]
    M. Najbar, A. Białas, J. Camra and B. Borz{ie138-01}cka-Prokop, in: Proc. 1st World Congr. Env. Catal., Pisa, 1995, p. 283.Google Scholar
  13. [13]
    M. Najbar and J. Camra, Solid State Ionics 101–103 (1997) 707.CrossRefGoogle Scholar
  14. [14]
    M. Najbar, A. Białas, F. Mizukami, A. Wesełucha-Birczyńska, E. Bielańska and A. Góra, Pol. J. Env. Stud. 6 (1997) 83.Google Scholar
  15. [15]
    M. Najbar, J. Camra, A. Białas, A. Wesełucha-Birczyńska, B. Borz{ie138-02}cka-Prokop, L. Delevoye and J. Klinowski, Phys. Chem. Chem. Phys. 1 (1999) 4645.CrossRefGoogle Scholar
  16. [16]
    M. Gąsior and B. Grzybowska, Bull. Acad. Pol. Sci., Ser. Sci. Chim. 27 (1979) 835.Google Scholar
  17. [17]
    L. Depero, P. Bonzi and M. Zocchi, C. Casale and G. De Michele, J. Matter. Res. 8 (1993) 2713.Google Scholar
  18. [18]
    R. Mariscal, M. Galan-Fereres, J. Anderson L. Alemany, J. Palacios and J. Fierro, in: Proc. 1st World Congr. Env. Catal., Piza, 1995, p. 223.Google Scholar
  19. [19]
    C. Cristiani, M. Bellotto, P. Forzatti and F. Bregani, J. Mater. Res. 8 (1993) 2019.Google Scholar
  20. [20]
    L.E. Depero, J. Solid State Chem. 104 (1993) 470.CrossRefGoogle Scholar
  21. [21]
    L.E. Depero, P. Bonzi, M. Musci and C. Casale, J. Solid State Chem. 111 (1994) 247.CrossRefGoogle Scholar
  22. [22]
    K.P. Kumar, K. Keizer, A.J. Burggraaf, T. Okubo and H. Nagamoto, J. Mater. Chem. 3 (1993) 923.CrossRefGoogle Scholar
  23. [23]
    JCPDF Card No. 14 576.Google Scholar
  24. [24]
    B. Gerand, G. Nowogrodzki and M. Figlarz, J. Solid State Chem. 38 (1981) 312.CrossRefGoogle Scholar
  25. [25]
    R. Roth and J. Waring, J. Res. NBS 70A (1966) 281.Google Scholar
  26. [26]
    B. Gerand, G. Nowogrodzki, J. Guenot and M. Figlarz, J. Solid State Chem. 29 (1979) 429.CrossRefGoogle Scholar
  27. [27]
    D. Dollimore and G.R. Heal, J. Appl. Chem. 14 (1964) 109.CrossRefGoogle Scholar
  28. [28]
    G. Exarhos and N. Hess, Thin Solid Films 220 (1992) 254.CrossRefGoogle Scholar
  29. [29]
    T.R. Gilson, O.F. Bizri and N. Cheetham, J. Chem. Soc. Dalton Trans. 291 (1973).Google Scholar
  30. [30]
    I.R. Beattie and T.R. Gilson, J. Chem. Soc. A (1969) 2322.Google Scholar
  31. [31]
    I.E. Wachs, R.Y. Saleh, S.S. Chan and C.C. Cherissh, Appl. Catal. 15 (1985) 339.CrossRefGoogle Scholar
  32. [32]
    T. Machej, J. Haber, A.M. Turek and I.E. Wachs, Appl. Catal. 70 (1991) 115.CrossRefGoogle Scholar
  33. [33]
    M. Najbar, A. Białas, A. Wesełucha-Birczyńska, in: Proc. Int. Conf. on Catalysis and Adsorption in Fuel Processing and Environmental Protection, eds. B. Pniak, J. Trawczński and J. Walendziewski (Wrocław University of Technology, Wrocław, 1999) p. 427.Google Scholar
  34. [34]
    I. Wachs and S. Chan, Appl. Surf. Sci. 20 (1984) 181.CrossRefGoogle Scholar
  35. [35]
    K. Brzezinka, B. Lucke, A. Martin, M. Meisel and K. Witke, Chem. Mater. 9 (1997) 1086.CrossRefGoogle Scholar
  36. [36]
    A. Bielański and M. Najbar, Appl. Catal. A 157 (1997) 223.CrossRefGoogle Scholar
  37. [37]
    A. Michalak, M. Witko and K. Hermann, Surf. Sci. 375 (1997) 385.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • M. Najbar
    • 1
  • F. Mizukami
    • 2
  • A. Białas
    • 1
  • J. Camra
    • 3
  • A. Wesełucha-Birczyńska
    • 3
  • H. Izutsu
    • 4
  • A. Góra
    • 1
  1. 1.Department of ChemistryJagiellonian UniversityKrakówPoland
  2. 2.National Institute of Materials and Chemical ResearchTsukubaJapan
  3. 3.Regional Laboratory of Physicochemical Analyses and Structural ResearchJagiellonian UniversityKrakówPoland
  4. 4.TakiChemical Co., Ltd.HyogoJapan

Personalised recommendations