Space Science Reviews

, Volume 94, Issue 1–2, pp 53–66 | Cite as

Long-term indirect indices of solar variability

  • Jürg Beer


Continuous direct records of solar variability are limited to the telescopic era covering approximately the past four centuries. For longer records one has to rely on indirect indices such as cosmogenic radionuclides. Their production rate is modulated by magnetic properties of the solar wind. Using a parameterisation of the solar activity and a Monte Carlo simulation model describing the interaction of the cosmic rays with the atmosphere, the production rate for each cosmogenic nuclide of interest can be calculated as a function of solar activity. Analysis of appropriate well-dated natural archives such as ice cores or tree rings offers the possibility to reconstruct the solar activity over many millennia. However, the interpretation of the cosmogenic nuclide records from these archives is difficult. The measured concentrations contain not only information on solar activity but also on changes in the geomagnetic field intensity and the transport from the atmosphere into the archive where, under ideal conditions, no further processes take place. Comparison of different nuclides (e.g. 10Be and 14C) that are produced in a very similar way but exhibit a completely different geochemical behaviour, allows us to separate production effects from system effects.

The presently available data show cyclic variability ranging from 11-year to millennial time scale periodicities with changing amplitudes, as well as irregularly distributed intervals of very low solar activity (so called minima, e.g. Maunder minimum) lasting typically 100 years.


Solar Wind Solar Activity Tree Ring Maunder Minimum Geochemical Behaviour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bard, E., Hamelin, B., Fairbanks, R. G., and Zindler, A.: 1990, ‘Calibration of the 14C time scale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals’, Nature 345, 405–410.Google Scholar
  2. Bard, E., Raisbeck, G. M., Yiou, F., and Jouzel, J.: 1997, ‘Solar modulation of cosmogenic nuclide production over the last millenium: comparison between 14C and 10Be records’, Earth. Planet. Sci. Let. 150, 453–462.Google Scholar
  3. Baumgartner, S., Beer, J., Masarik, J., Wagner, G., Meynadier, L., and Synal, H.-A.: 1998, ‘Geomagnetic modulation of the 36Cl flux in the GRIP ice core, Greenland’, Science 279, 1330–1332.Google Scholar
  4. Baumgartner, S., Beer, J., Wagner, G., Kubik, P. W., Suter, M., Raisbeck, G. M., and Yiou, F.: 1997, ‘10Be and dust’, Nucl. Instr. Meth. B123, 296–301.Google Scholar
  5. Beer, J., AndrÈe, M., Oeschger, H., Siegenthaler, U., Bonani, G., Hofmann, H., Morenzoni, E., Nessi, M., Suter, M., Wölfli, W., Finkel, R., and Langway Jr., C.: 1984, ‘The Camp Century 10Be Record: Implications for Long-Term Variations of the Geomagnetic DipoleMoment’, Nucl. Instrum. Meth. B5, 380–384.Google Scholar
  6. Beer, J., Baumgartner, S., Hannen-Dittrich, B., Hauenstein, J., Kubik, P., Lukasczyk, C., Mende, W., Stellmacher, R., and Suter, M.: 1994, ‘Solar Variability Traced by Cosmogenic Isotopes’, in The Sun as a Variable Star: Solar and Stellar Irradiance Variations, J. M. Pap, C. Fröhlich, H. S. Hudson and S. K. Solanki (eds.), pp. 291-300, Cambridge University Press.Google Scholar
  7. Beer, J., Blinov, A., Bonani, G., Finkel, R. C., Hofmann, H. J., Lehmann, B., Oeschger, H., Sigg, A., Schwander, J., Staffelbach, T., Stauffer, B., Suter, M., and Wölfli, W.: 1990, ‘Use of 10Be in polar ice to trace the 11-year cycle of solar activity’, Nature 347, 164–166.Google Scholar
  8. Beer, J., Mende, W., R., S., and White, O. R.: 1996, ‘Intercomparisons of proxies for past solar variability’, in Climate variations and forcing mechanisms of the last 2000 years, P. D. Jones, R. S. Bradley and J. Jouzel (eds.), Vol. I41, Springer-Verlag, Heidelberg.Google Scholar
  9. Beer, J., Mende, W., and Stellmacher, R.: 2000, ‘The role of Sun in climate forcing’, Quat. Sci. Rev. 19, 403–415.Google Scholar
  10. Beer, J., Raisbeck, G. M., and Yiou, F.: 1991, ‘Time Variations of 10Be and Solar Activity’, in The Sun in Time, C. P. Sonett, M. S. Giampapa and M. S. Matthews (eds.), pp. 343-359. Univ. of Arizona press, Tucson.Google Scholar
  11. Beer, J., and Sturm, M.: 1995, ‘Dating of lake and loess sediments’, ‘Radiocarbon 37, 81–86.Google Scholar
  12. Beer, J., Tobias, S. M., and Weiss, N. O.: 1998, ‘An active Sun throughout the Maunder minimum’, Solar Physics 181, 237–249.Google Scholar
  13. Broecker, W. S., Sutherland, S., and Peng, T.-H.: 1999, ‘A possible 20th-century slowdown of southern ocean deep water formation’, Science 286, 1132–1135.Google Scholar
  14. Brost, R. A., Feichter, J., and Heimann, M.: 1991, ‘Three-dimensional simulation of 7Be in a global climate model’, J. Geophys. Res. 96, 22,423–22,445.Google Scholar
  15. Damon, P. E., and Jirikowic, J. L.: 1992, ‘The Sun as a low-frequency harmonic oscillator’, Radiocarbon 34, 199–205.Google Scholar
  16. Finkel, R. C. and Nishiizumi, K.: 1997, ‘Beryllium-10 concentrations in the Greenland ice sheet project 2 ice core from 3–40 ka’, J. Geophys. Res. 102, 26,699–26,706.Google Scholar
  17. Fröhlich, C., and Lean, J.: 1997, ‘Total Solar Irradiance Variations’, in IAU Symposium 185, F. L. Deubner (ed.), Kluwer Academic Publ., Dordrecht.Google Scholar
  18. Fröhlich, C.: 2000, Space Sci. Rev., this volume.Google Scholar
  19. Gilliland, R. L.: 1981, ‘Solar radius variations over the past 265 years’, Astrophys. J. 248, 1144–1155.Google Scholar
  20. Gleissberg, W.: 1965, ‘The eighty-year solar cycle in auroral frequency numbers’, J. Br. Astron. Assoc. 75, 227.Google Scholar
  21. Hajdas, I.: 1993, ‘Extension of the Radiocarbon Calibration Curve by AMS Dating of Laminated Sediments of Lake Soppensee and Lake Holzmaar’, PhD Thesis, ETH Zürich.Google Scholar
  22. Hughen, K., Overpeck, J. T., Lehmann, S., Kashgarian, M., Southon, J., Peterson, L. C., Alley, R., and Sigman, D. M.: 1998, ‘Deglacial changes in ocean circulation from an extended radiocarbon calibration’, Nature 391, 65–68.Google Scholar
  23. Kitagawa, H., and Van der Plicht, J.: 1998, ‘A 40,000-year varve chronology from lake Suigetsu, Japan: Extension of the 14C calibration curve’, Radiocarbon 40, 505–515.Google Scholar
  24. Lean, J.: 1997, ‘The Sun's variable radiation and its relevance for Earth’, Ann. Rev. Astron. Astrophys. 35, 33–67.Google Scholar
  25. Masarik, J., and Beer, J.: 1999, ‘Simulation of particle fluxes and cosmogenic nuclide production in the Earth's atmosphere’, J. Geophys. Res. 104, 12,099–13,012.Google Scholar
  26. McCormac, F. G., Hogg, A. G., Higham, T. F. G., Lynch-Stieglitz, J., Broecker, W. S., Baillie, M. L. L., Xiong, L., Pilcher, J. R., Brown, D., and Hoper, S. T.: 1998, ‘Temporal variation in the interhemispheric 14C offset’, Geophys. Res. Lett. 25, 1321–1324.Google Scholar
  27. Mende, W. and Stellmacher, R.: 2000, Space Sci. Rev., this volume.Google Scholar
  28. Pap, J. M., and Fröhlich, C: 1997, ‘Total irradiance variations’, J. Atmos. Solar-Terr. Phys., 1–13.Google Scholar
  29. Scheffel, C., Blinov, A., Massonet, S., Sachsenhauser, H., Stan-Sion, C., Beer, J., Synal, H. A.,Kubik, P. W., Kaba, M., and Nolte, E.: 1999, ‘36Cl in modern atmospheric precipitation’, J. Geophys. Res. 26, 1401–1404.Google Scholar
  30. Siegenthaler, U., Heimann, M., and Oeschger, H.: 1980, ‘14C Variations Caused by Changes in the Global Carbon Cycle’, Radiocarbon 22, 177–191.Google Scholar
  31. Stuiver, M., and Braziunas, T. F.: 1993, ‘Sun, Ocean, Climate and Atmospheric 14CO2, an evaluation of causal and spectral relationships’, The Holocene 3, 289–305.Google Scholar
  32. Stuiver, M., Reimer, P. J., Bard, E., Beck, J. W., Burr, G. S., Hughen, K. A., Kromer, B., McCormac, G., Van der Plicht, J., and Spurk, M.: 1998, ‘INTCAL98 Radiocarbon age calibration, 24,000-0 cal BP’, Radiocarbon 40, 1041–1083.Google Scholar
  33. Wagner, G., Masarik, J., Beer, J., Baumgartner, S., Imboden, D., Kubik, P. W., Synal, H.-A. and Suter, M.: 2000a, Nucl. Instr. Meth., in press.Google Scholar
  34. Wagner, G., Beer, J., Masarik, J., Muscheler, R., Kubik, P.W., Laj, C., Mende, W., Raisbeck, G. M., and Yiou, F: 2000b, ‘Presence of the solar de Vries cycle ( 205 years) during the last ice age’, Geophys. Res. Lett., submitted.Google Scholar
  35. Wagnon, P., Delmas, R. J. and Legrand, M.: 1999, ‘Loss of volatile acid species from upper firn layers at Vostok, Antarctica’, J. Geophys. Res. 104, 3423–3432.Google Scholar
  36. Willson, R. C.: 1997, ‘Total solar irradiance trend during solar cycles 21 and 22’, Science 277, 1963–1965.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Jürg Beer
    • 1
  1. 1.Environmental Physics, EAWAGDübendorfSwitzerland

Personalised recommendations