Space Science Reviews

, Volume 94, Issue 1–2, pp 161–168 | Cite as

A Least-squares Solution for the Effective Conductivity of the Solar Convection Zone

  • J.R. Kuhn
  • D. Georgobiani


Here we show how realistic numerical simulations of solar convection can be parameterized with an effective thermal conductivity tensor. We show that this diffusive approximation yields an accurate statistical (in the sense of the χ2 test) description of the thermal transport properties of a perturbed solar convection zone. This parameterization will allow more accurate large scale solar irradiance and luminosity calculations.


Convection Thermal Conductivity Transport Property Solar Irradiance Effective Thermal Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bevington, P. R. and Robinson, D. K.: 1992, Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, New York.Google Scholar
  2. Bohm-Vitense, E.: 1958, Z. Astrophys. 46, 108.Google Scholar
  3. Castaing, B. et al.: 1989, J. Fluid Mech. 204, 1.Google Scholar
  4. Cox, J. P. and Giuli, R. T.: 1968, Principles of Stellar Structure, Gordon and Breach, New York.Google Scholar
  5. Fowler, L. A., Foukal, P. and Duvall, T.: 1983, Solar Phys. 84, 33.Google Scholar
  6. Georgobiani, D., Kuhn, J. R. and Stein, R. F.: 1997, in F. P. Pijpers et al. (eds.), SCORe’ 96: Solar Convection and Oscillations and their Relationship, Kluwer Academic Publishers, Dordrecht.Google Scholar
  7. Kerr, R. M.: 1996, J. Fluid Mech. 310, 139.Google Scholar
  8. Kuhn, J. R.: 1996, in T. Roca Cortes (ed.), VI IACWinter School: The Structure of the Sun, Cambridge University Press, Cambridge, p. 231.Google Scholar
  9. Kuhn, J. R., Libbrecht, K. G., and Dicke, R. H.: 1988, Science 242, 908.Google Scholar
  10. Kuhn, J.R. and Stein, R. F.: 1996, Astrophys. J. 463, L117.Google Scholar
  11. Landau, L. D. and Lifshitz, E. M.: 1987, Fluid Mechanics, Pergamon Press, London.Google Scholar
  12. Nordlund, A. and Stein, R. F.: 1990, Comp. Phys. Comm. 59, 119.Google Scholar
  13. Nye, A., Bruning, D., and Labonte, B. J.: 1988, Solar Phys. 115, 251.Google Scholar
  14. Rast, M. et al.: 1999, ‘Observations of Sunspot Bright Rings’, preprint.Google Scholar
  15. Siggia, E.D., Ann. Rev. Fluid Mech., 26, 137.Google Scholar
  16. Spruit, H. C.: 1977, Solar Phys. 55, 3.Google Scholar
  17. Spruit, H. C.: 1991, The Sun in Time, University of Arizona Press, Tucson, p. 118.Google Scholar
  18. Spruit, H. C.: 1997, Mem. Soc. Astron. It. 68 (2), 397.Google Scholar
  19. Stein, R. F. and Nordlund, A.: 1989, Astrophys. J. 342, L95.Google Scholar
  20. Stein, R. F. and Nordlund, A. 1998, Astrophys. J. 499, 914.Google Scholar
  21. Tikhonov, A. N. and Samarskii, A. A.: 1963, Equations of Mathematical Physics, Pergamon Press, London.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • J.R. Kuhn
    • 1
  • D. Georgobiani
    • 2
  1. 1.Institute for AstronomyHonolulu
  2. 2.Dept. Physics-AstronomyMichigan State UniversityE. Lansing

Personalised recommendations