Space Science Reviews

, Volume 94, Issue 1–2, pp 113–126 | Cite as

Theory of solar irradiance variations

  • H. Spruit


The theory of stellar structure can be used to identify the most plausible mechanisms for the irradiance variations associated with the solar cycle. Changes in surface emissivity, i.e. the reduced cooling in spots and enhanced emission by small scale magnetic fields, are the most effective mechanisms and account for most of the observed variation. New views of stellar surface convection developed from realistic numerical simulations changes the physical description of thermal perturbations of the solar envelope. Helioseismology will soon be able to test the consequences of changes in surface emissivity, and distinguish them from other scenarios for irradiance variability.


Magnetic Field Convection Emissivity Solar Cycle Solar Irradiance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arendt, S.: 1992, Astrophys. J 389, 421.Google Scholar
  2. Bogdan, T. J., Braun, D. C., Lites, B. W. and Thomas, J. H.: 1998 Astrophys. J. 492, 379.Google Scholar
  3. Braun, D.C.: 1997, Astrophys. J. 487, 447.Google Scholar
  4. Brüggen, M. and Spruit, H.C., 2000, in prepapration.Google Scholar
  5. Caligari, P., Schuessler, M. and Moreno-Insertis, F.: 1998 Astrophys. J. 502, 481.Google Scholar
  6. Chiang, W. H. and Foukal, P. V.: 1984, Solar Phys. 97, 9.Google Scholar
  7. Dicke, R. H., Kuhn, J. R. and Libbrecht, K. G.: 1987, Astrophys. J. 318, 451.Google Scholar
  8. D'silva, S. and Choudhuri, A. R., 1993: Astron. Astrophys. 272, 621.Google Scholar
  9. D'silva, S. and Howard, R. A.: 1993, Solar Phys. 148, 1.Google Scholar
  10. Duvall, T. L., JR., Kosovichev, A. G., Scherrer, P. H., Bogart, R. S., Bush, R. I., De Forest, C., Hoeksema, J. T., Schou, J., Saba, J. L. R., Tarbell, T. D., Title, A.M., Wolfson, C. J. and Milford, P. N.: 1997, Solar Phys. 170, 63.Google Scholar
  11. Duvall, T., JR.; Kosovichev, A. G. and Scherrer, P. H.: 1998 in Sounding solar and stellar interiors, eds. J. Provost, F.-X. Schmider (IAU symposium 181, Nice, France, September 30-October 3), Dordrecht: Kluwer Academic Publishers.Google Scholar
  12. Duvall, T.L., Jr. and Kosovichev, A.G.: 1999, in SOHO-9 Workshop Helioseismic Diagnostics of Solar Convection and Activity, Stanford, California.Google Scholar
  13. Dziembowski, W.A., Goode, P.R., Di Mauro, M.P., Kosovichev, A.G. and Schou, J.: 1998, Astrophys. J. 509, 456.Google Scholar
  14. Endal, A. S., Sofia, S. and Twigg L. W.: 1982, Astrophys. J. 290, 748.Google Scholar
  15. Foukal, P. V., Fowler, P. and Livshits, M.: 1983, Astrophys. J. 267, 863.Google Scholar
  16. Foukal, P. V. and Lean, J.: 1986, Astrophys. J. 302, 826.Google Scholar
  17. Giles, P.M., Duvall, T.L., Jr., Scherrer, P.H. and Bogart, R.S.: 1997, Nature 390, 52–54.Google Scholar
  18. Gilliland, R. L.: 1988, in Solar radiative output variation, P. Foukal, ed., Cambridge Research and Instrumentation Inc., 21 Erie st. Cambridge, MA 02139, p. 239.Google Scholar
  19. Goldreich, P., Murray, N., Willette, G., Kumar, P.: 1991, Astrophys. J., 370, 752.Google Scholar
  20. Goode, P.R. and Kuhn, J.R.: 1990, Astrophys. J. 356, 310.Google Scholar
  21. Goode, P.R. and Dziembowski, W.A.: 1999, in SOHO-9 Workshop “Helioseismic Diagnostics of Solar Convection and Activity”, Stanford, California, July 12-15: 1999.Google Scholar
  22. Kosovichev, A.G.: 1996, Astrophys. J. 461, L55.Google Scholar
  23. Kosovichev, A.G. and Schou, J.: 1997, Astrophys. J. 482, L207.Google Scholar
  24. Kuhn, J.R., Libbrecht, K.G. and Dicke, R.H.: 1988, Science 242, 908.Google Scholar
  25. Kuhn, J.R. and Stein, R.F.: 1996, Astrophys. J. 463, L117.Google Scholar
  26. Kuhn, J. R., Bush, R. I., Scherrer, P. and Scheick, X.: 1998, Nature 392, 155.Google Scholar
  27. Lean, J.L., Cook, J., Marquette, W. and Johanneson, A.: 1998, Astrophys. J. 492, 390.Google Scholar
  28. Libbrecht, K. G. and Woodard, M. F.: 1990, Nature 345, 779.Google Scholar
  29. Ludwig, H.-G., Freytag, B. and Steffen, MA.: 1999 Astron. Astrophys. 346, 111.Google Scholar
  30. Macris, C.J. and Roesch, J.: 1983, Comptes Rendus, ser II, 296, 265.Google Scholar
  31. Muller, R.: 1986 Solar Phys., 119, 229.Google Scholar
  32. Muller, R. and Roudier, T.: 1984, in The Hydromagnetics of the Sun ed. T.D. Guyenne, ESA SP 220, p. 51.Google Scholar
  33. Nordlund, Å.: 1982, Astron. Astrophys. 107, 1.Google Scholar
  34. Nordlund, Å.: 1985a, in Small scale dynamical processes in quiet stellar atmospheres ed. W. Keil, Sacramento Peak Observatory, Sunspot, NM 88349, USA.Google Scholar
  35. Nordlund, Å.: 1985b, in Progress in stellar spectral line formation theory, eds. J.E. Beckman and L. Crivellari (NATO ASI series 152), Reidel, Dordrecht, p. 215.Google Scholar
  36. Nordlund, Å.: 1986, Solar Phys., 100, 209.Google Scholar
  37. Nordlund, Å.: 1991, in Stellar atmopheres: Beyond classical models, eds. L. Crivellari, I. Hubeny and D.G. Hummer (NATO ASI series 341), Kluwer, Dordrecht, p. 61.Google Scholar
  38. Nordlund, Å. and Dravins, D.: 1990, Astron. Astrophys. 228, 155.Google Scholar
  39. Nordlund, Å. and Stein, R.F.: 1990, Comp. Phys. Comm. 59, 119.Google Scholar
  40. Nordlund, Å. and Stein, R.F.: 1991, in Stellar atmopheres: beyond classical models, eds. L. Crivellari, I. Hubeny and D.G. Hummer (NATO ASI series 341), Kluwer, Dordrecht, p. 263.Google Scholar
  41. Nordlund, Å. and Stein, R.F.: 1996, in ‘Stellar Evolution: What should be done’, eds. A. Noels et al. p. 75.Google Scholar
  42. Pedlosky, J.: 1982, Geophysical Fluid Dynamics, New York: Springer.Google Scholar
  43. Rast, M.P., Fox, P.A., Lin, H., Lites, B.W., Meisner, R.W. and White, O.R.: 1999, Nature 401, 678.Google Scholar
  44. Schüssler, M.: 1981, Astron. Astrophys. 94, L17.Google Scholar
  45. Solanki, S.K. and Unruh, Y.C.: 1998, Astron. Astrophys. 329, 747.Google Scholar
  46. Spruit, H.C.: 1976, Solar Phys. 50, 269.Google Scholar
  47. Spruit, H.C.: 1977, Solar Phys. 55, 3.Google Scholar
  48. Spruit, H.C.: 1982a, Astron. Astrophys. 108, 348.Google Scholar
  49. Spruit, H.C.: 1982b, Astron. Astrophys. 108, 356.Google Scholar
  50. Spruit, H.C.: 1991, in The Sun in Time, eds. C. Sonett, M. Giampapa and M.S. Matthews, University of Arizona Press, Tucson, p. 118.Google Scholar
  51. Spruit, H.C.: 1992, in Sunspots: Theory and Observations, eds. J.H. Thomas and N.O. Weiss, Cambridge: CUP, p. 163.Google Scholar
  52. Spruit, H.C.: 1997, Mem. Soc. Astron. It., 68, 397.Google Scholar
  53. Spruit, H.C. and Weiss, A.: 1986, Astron. Astrophys. 166, 167.Google Scholar
  54. Steffen, M., Ludwig, H.-G. and Krüss, A.: 1989 Astron. Astrophys. 213, 317.Google Scholar
  55. Steffen, M.: 1993, in Inside the stars (IAU Coll 137), eds. W. Weiss and A. Baglin, Astron. Soc. Pac. Conference series 40, p. 300.Google Scholar
  56. Stein, R.F. and Nordlund, Å.: 1989, Astrophys. J. 342, L95.Google Scholar
  57. Stein, R.F. and Nordlund, Å.: 1991, in Challenges to Theories of the Structure of Moderate-Mass Stars, eds. D.O. Gough and J. Toomre, Lecture Notes in Physics 388, Springer, Berlin, p. 195.Google Scholar
  58. Stein, R.F. and Nordlund, Å.: 1998, Astrophys. J. 499, 914.Google Scholar
  59. Steiner, O., Grossmann-Doerth, U., Knoelker, M. and Schüssler, M.: 1998, Astrophys. J. 495, 468.Google Scholar
  60. Topka, K.P., Tarbell, T.D. and Title, A.M.: 1997, Astrophys. J. 484, 479.Google Scholar
  61. Title, A.M., Topka, K.P., Tarbell, T.D., Schmidt, W., Balke, C. and Scharmer, G.: 1992, Astrophys. J. 393, 782.Google Scholar
  62. Ulrich, R.K.: 1998, in New eyes to see...., F. Deubner et al., eds., IAU Symposium 185, 59.Google Scholar
  63. Unruh, Y.C., Solanki, S.K. and Fligge, M.: 1999, Astron. Astrophys. 345, 635.Google Scholar
  64. Woodard, M. F., Libbrecht, K. G., Kuhn, J. R. and Murray, N.: 1991, Astrophys. J. 373, L81.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • H. Spruit
    • 1
  1. 1.Max-Planck-Institut für AstrophysikGarchingGermany

Personalised recommendations